[1]Zhuang Q Q, Zhang P L, Li M C, et al. Microstructure, wear resistance and oxidation behavior of Ni-Ti-Si coatings fabricated on Ti6Al4V by laser cladding[J]. Materials, 2017, 10(11): 1248-1262. [2]张 坚, 吴文妮, 赵龙志. 激光熔覆研究现状及发展趋势[J]. 热加工工艺, 2013, 42(6): 131-134, 139. Zhang Jian, Wu Wenni, Zhao Longzhi. Research progress and development trend of laser cladding[J]. Hot Working Technology, 2013, 42(6): 131-134, 139. [3]Guo C, Chen J, Zhou J, et al. Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating[J]. Surface and Coating Technology, 2012, 206(8/9): 2064-2071. [4]Barbosa M, Bischoff R, Strauβ W, et al. Less CO2 and fine dust emissions in automotive: High-power laser cladding as a cost-effective rotor coating solution[J]. Photonies Views, 2020, 17(4): 46-49. [5]王志东, 张佳豪, 王明静, 等. 激光熔覆TiC增强镍基熔覆层的微观组织与耐磨性研究[J]. 矿冶工程, 2023, 43(1): 137-140. Wang Zhidong, Zhang Jiahao, Wang Mingjing, et al. Microstructure and wear resistance of TiC reinforced Ni-based coating by laser cladding[J]. Mining and Metallurgical Engineering, 2023, 43(1): 137-140. [6]李传强, 陈少克. 45钢表面激光熔覆Ni/TiC性能研究[J]. 装备制造技术, 2011(8): 20-22. Li Chuanqiang, Chen Shaoke. Research on properties of Ni/TiC on 45 steel surface preparaed by laser cladding[J]. Equipment Manufacturing Technology, 2011(8): 20-22. [7]程 才, 师文庆, 吴 腾, 等. TiC含量对激光熔覆Fe基涂层形貌与力学性能研究[J]. 激光与光电子学进展, 2023, 60 (19): 158-163. Cheng Cai, Shi Wenqing, Wu Teng, et al. Study of the effect of TiC content on the morphology and mechanical properties of laser cladding Fe-base coatings[J]. Laser and Optoelectronics Progress, 2023, 60 (19): 158-163. [8]张蕾涛, 李海涛, 贾润楠, 等. 激光重熔Ni60/50%WC复合涂层的制备及性能[J]. 金属热处理, 2021, 46(5): 229-234. Zhang Leitao, Li Haitao, Jia Runnan, et al. Preparation and properties of laser remelted Ni60/50%WC composite coating[J]. Heat Treatment of Metals, 2021, 46(5): 229-234. [9]张蕾涛. 45钢激光熔覆Ni60/WC涂层的裂纹成因及控制研究[D]. 西安: 长安大学, 2021. [10]周建波, 张 晶, 张蕾涛, 等. 激光工艺参数对Ni60/WC涂层裂纹率及组织的影响[J]. 金属热处理, 2021, 46(9): 252-257. Zhou Jianbo, Zhang Jing, Zhang Leitao, et al. Effect of laser process parameters on crack rate and microstructure of Ni60/WC clad coating[J]. Heat Treatment of Metals, 2021, 46(9): 252-257. [11]崔 岗, 韩 彬, 崔 娜, 等. 扫描速度对激光熔覆Ni基WC合金涂层组织与性能的影响[J]. 中国表面工程, 2014, 27(4): 82-88. Cui Gang, Han Bin, Cui Na, et al. Effect of scanning speed on microstructure and properties of laser cladding Ni-based WC alloy coating[J]. China Surface Engineering, 2014, 27(4): 82-88. [12]栾景飞. 工艺因素对激光熔敷层裂纹率的影响[J]. 材料科学与工程, 2002(3): 349-353. Luan Jingfei. Effect of processing factors on crack ration of laser clad layer[J]. Journal of Materials Science and Engineering, 2002(3): 349-353. [13]Liu H M, Li M B, Qin X P, et al. Numerical simulation and experimental analysis of wide-beam laser cladding[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100: 237-249. [14]杨 光, 王向明, 王 维, 等. 激光熔覆制备TiC颗粒增强涂层的组织和性能[J]. 红外与激光工程, 2014, 43(3): 795-799. Yang Guang, Wang Xiangming, Wang Wei, et al. Microstructure and property of laser cladding TiC reinforced composition coating[J]. Infrared and Laser Engineering, 2014, 43(3): 795-799. [15]曹金龙, 杨学锋, 王守仁, 等. 45钢表面激光熔覆Ni60-TiC陶瓷涂层的耐磨耐蚀性能[J]. 稀有金属材料与工程, 2020, 49(2): 611-617. Cao Jinlong, Yang Xuefeng, Wang Shouren, et al. Wear and corrosion resistance of laser-melted Ni60-TiC ceramic coating on 45 steel surface[J]. Rare Metal Materials and Engineering, 2020, 49(2): 611-617. |