[1]杨忠民. 我国海洋工程用钢发展现状[J]. 新材料产业, 2013(11): 17-19. Yang Zhongmin. The development status of steel for marine engineering in China[J]. New Materials Industry, 2013(11): 17-19. [2]唐学生. 海洋工程用钢需求现状及前景分析[J]. 船舶物资与市场, 2010(1): 10-12. Tang Xuesheng. Analysis of the current situation and prospect of steel demand for marine engineering[J]. Ship Materials and Markets, 2010(1): 10-12. [3]杨才福, 苏 航. 高性能船舶及海洋工程用钢的开发[J]. 钢铁, 2012, 47(12): 1-8. Yang Caifu, Su Hang. Research and development of high performance shipbuilding and marine engineering steel[J]. Iron and Steel, 2012, 47(12): 1-8. [4]徐 振, 王弘江, 李 凯, 等. 超高强海工钢研发生产现状与发展趋势[J]. 辽宁科技大学学报, 2020, 43(4): 264-267, 314. Xu Zhen, Wang Hongjiang, Li Kai, et al. Production status and development trend of ultra-high strength marine steels[J]. Journal of University of Science and Technology Liaoning, 2020, 43(4): 264-267, 314. [5]刘 敏. 海洋平台用钢E690工艺优化研究[D]. 赣州: 江西理工大学, 2015. [6]颜慧成, 曹慧泉, 罗 登, 等. 钛、铌、硼对低碳贝氏体钢组织与性能的影响[J]. 钢铁研究学报, 2010, 22(5): 55-58. Yan Huicheng, Cao Huiquan, Luo Deng, et al. Influence of Ti, Nb and B on microstructure and mechanical properties of low carbon bainitic steel[J]. Journal of Iron and Steel Research, 2010, 22(5): 55-58. [7]邓通武. C、Mn、Cr对中碳MnB钢228节距履带淬透性的影响[J]. 特殊钢, 2012, 33(6): 53-55. Deng Tongwu. Effect of C, Mn, Cr on hardenability medium of carbon MnB steel 228 pitch crawler belt[J]. Special Steel, 2012, 33(6): 53-55. [8]刘东雨, 白秉哲, 方鸿生. Si对低合金高强度钢和超高强度钢抗延迟断裂性能的影响[J]. 国外金属热处理, 2001, 22(1): 25-27, 11. Liu Dongyu, Bai Bingzhe, Fang Hongsheng. Effect of Si on the resistance of low alloy high strength steel and ultra high strength steel to delay breakage[J]. Heat Treatment of Metals Abroad, 2001, 22(1): 25-27, 11. [9]Luo W T, Wang L L, Wang Y H, et al. Microstructure and mechanical properties of a 2wt% Nb bearing low carbon steel[J]. Materials Science and Engineering A, 2021, 826: 141957. [10]李振团, 柴 锋, 杨才福, 等. 淬火工艺对UHS海工钢力学性能的影响[J]. 材料研究学报, 2018, 32(12): 889-897. Li Zhentuan, Chai Feng, Yang Caifu, et al. Effect of quenching on mechanical property of ultra-high strength marine engineering steel[J]. Chinese Journal of Materials Research, 2018, 32(12): 889-897. [11]吴保桥, 彭 林, 何军委, 等. Cr元素及轧后控冷工艺对高强H型钢组织性能的影响[J]. 轧钢, 2021, 38(4): 55-59. Wu Baoqiao, Peng Lin, He Junwei, et al. Influence of Cr element and controlled colling process after rolling on microstructure and mechanical properties of high-strength H-beam steel[J]. Steel Rolling, 2021, 38(4): 55-59. [12]Zhao N, Zhao Q Q, He Y L, et al. Strengthening-toughening mechanism of cost-saving marine steel plate with 1000 MPa yield strength[J]. Materials Science and Engineering A, 2022, 831, 142280. [13]陶素芬. 700 MPa级海洋平台用钢成分、组织与性能的研究[D]. 北京: 北京科技大学, 2015. [14]狄国标, 周砚磊, 麻庆申, 等. 镍含量对海洋平台用钢组织性能的影响[J]. 钢铁研究学报, 2012, 24(6): 52-56. Di Guobiao, Zhou Yanlei, Ma Qingshen, et al. Effect of Ni content on microstructures and mechanical properties of offshore platform steel[J]. Journal of Iron and Steel Research, 2012, 24(6): 52-56. [15]余永光. 船舶及海洋平台用钢的开发与应用[D]. 秦皇岛: 燕山大学, 2016. [16]Monschein S, Ragger K S, Zugner D, et al. Influence of the Ti content on the grain stability and the recrystallization behavior of Nb-alloyed high-strength low-alloyed steels[J]. Steel Research International, 2008, 485(1/2): 383-394. [17]万响亮, 李光强, 吴开明. 原位观察TiN粒子对低合金高强度钢模拟焊接热影响区粗晶区晶粒细化作用[J]. 工程科学学报, 2016, 38(3): 371-378. Wan Xiangliang, Li Guangqiang, Wu Kaiming. In-situ observations of grain refinement by TiN particles in the simulated coarse-grained heat-affected zone of a high-strength low-alloy steel[J]. Chinese Journal of Engineering, 2016, 38(3): 371-378. [18]Liu D, Jian Y, Zhang Y H. In-situ observation of bainite transformation in CGHAZ of 420 MPa grade offshore engineering steel with different Mo contents[J]. International Journal of Refractory Metals and Hard Material, 2022, 62(4): 714-725. [19]席仕平. 含Mo、Sn海工钢动态再结晶行为实验研究及数值模拟[D]. 秦皇岛: 燕山大学, 2021. [20]Xi S P, Gao X L, Liu W, et al. Hot deformation behavior and processing map of low-alloy offshore steel[J]. Journal of Iron and Steel Research International, 2022, 29(3): 474-483. [21]黄 刚. 合金元素对高强度钢焊接热影响区微观组织和韧性的影响[D]. 武汉: 武汉科技大学, 2019. [22]Wu X Y, Xiao P C, Wu S J, et al. Effect of molybdenum on the impact toughness of heat-affected zone in high-strength low-alloy steel[J]. Materials, 2021, 14(6): 1430. [23]李德强, 吴宇新. Al对超高强海工钢组织及力学性能的影响[J]. 鞍钢技术, 2020(3): 23-29. Li Deqiang, Wu Yuxin. Effect of Al on microstructures and mechanical properties of ultra-high strength steel for marine engineering[J]. Angang Technology, 2020(3): 23-29. [24]Xu X X, Cheng H L, Wu W, et al. Stress corrosion cracking behavior and mechanism of Fe-Mn-Al-C-Ni high specific strength steel in the marine atmospheric environment[J]. Corrosion Science, 2021, 191: 109760. [25]王顺兴. 金属热处理原理与工艺[M]. 哈尔滨: 哈尔滨工业大学出版社, 2019. [26]冯 锐. 铁素体/珠光体型钢板内部质量及其影响因素研究[D]. 济南: 山东大学, 2013. [27]刘观猷, 葛 亮, 周永浩, 等. 420 MPa级超高强度高韧性海工钢的研制[J]. 宽厚板, 2021, 27(6): 30-33. Liu Guanyou, Ge Liang, Zhou Yonghao, et al. Research and development of 420 MPa grade ultra-high strength and high toughness steel for offshore engineering[J]. Wide and Heavy Plate, 2021, 27(6): 30-33. [28]尚成嘉, 杨善武, 王学敏, 等. 新颖的贝氏体/铁素体双相低碳微合金钢[J]. 北京科技大学学报, 2003, 25(3): 288-290. Shang Chengjia, Yang Shanwu, Wang Xuemin, et al. A bainite/ferritic dual-phase low carbon microalloy steel with high strength and ductility[J]. Journal of University of Science and Technology Beijing, 2003, 25(3): 288-290. [29]Shao Y, Liu C X, Yan Z S, et al. Formation mechanism and control methods of acicular ferrite in HSLA steels: A review[J]. Journal of Materials Science and Technology, 2018, 34(5): 737-744. [30]Wang H H, Li G Q, Wan X L, et al. Microstructural characteristics and impact toughness in YS690MPa steel weld metal for offshore structures[J]. Science and Technology of Welding and Joining, 2017, 22(2): 133-142. [31]狄国标, 杨永达, 麻庆申, 等. TMCP工艺海洋平台用钢EQ51的开发[J]. 钢铁, 2015, 50(6): 75-80. Di Guobiao, Yang Yongda, Ma Qingshen, et al. Development of TMCP processed EQ51 plate steel for offshore platform[J]. Iron and Steel, 2015, 50(6): 75-80. [32]周 凯. 980 MPa级冷轧双相钢连续退火工艺与组织性能研究[D]. 沈阳: 东北大学, 2015. [33]陈 庆. 淬火温度对马氏体/铁素体双相钢组织性能的影响[J]. 冶金分析, 2018, 38(10): 63-67. Chen Qing. Effects of quenching temperature on the microstructure and properties of martensite/ferrite dual phase steel[J]. Metallurgical Analysis, 2018, 38(10): 63-67. [34]张丕军. 800 MPa级针状铁素体马氏体双相钢厚板的研制[D]. 沈阳: 东北大学, 2006. [35]李 琳, 徐锐良, 李忠利, 等. 带状组织对铁素体-马氏体钢拉伸断裂行为的影响[J]. 热加工工艺, 2021, 50(14): 46-50. Li Lin, Xu Ruiliang, Li Zhongli, et al. Effect of banded structure on tensile fracture behavior of ferritic-martensitic steel[J]. Hot Working Technology, 2021, 50(14): 46-50. [36]聂 燚, 董文龙, 赵运堂, 等. 高强度低碳贝氏体钢工艺和组织对性能的影响[J]. 北京科技大学学报, 2006, 28(8): 733-738. Nie Yan, Dong Wenlong, Zhao Yuntang, et al. Effects of process parameters and intermediate transformation structure on mechanical properties of a high strength low carbon bainitic steel[J]. Journal of University of Science and Technology Beijing, 2006, 28(8): 733-738. [37]宗 云, 刘春明. 低碳高强度海洋平台用钢的研究应用进展[J]. 齐鲁工业大学学报, 2017, 31(2): 31-34. Zong Yun, Liu Chunming. Research progress and application of low-carbon high-strength offshore platform steel[J]. Journal of Qilu University of Technology, 2017, 31(2): 31-34. [38]李 静, 尚成嘉, 贺信莱, 等. 碳含量对高性能桥梁钢组织结构和性能的影响[J]. 钢铁, 2006, 41(12): 64-69. Li Jing, Shang Chengjia, He Xinlai, et al. Effect of carbon content on microstructure and properties of high- performance bridge steel[J]. Iron and Steel, 2006, 41(12): 64-69. [39]王振云, 丁 玮. 马氏体/贝氏体双相细晶粒钢的组织与性能研究[J]. 材料热处理技术, 2008, 37(18): 34-36. Wang Zhenyun, Ding Wei. Study on microstructure and properties of martensite/bainite dual phase steel[J]. Material and Heat Treatment, 2008, 37(18): 34-36. [40]崔桂彬, 鞠新华, 王泽阳, 等. 钢中贝/马双相组织的EBSD表征及其对性能的影响[J]. 金属热处理, 2019, 44(10): 147-151. Cui Guibin, Ju Xinhua, Wang Zeyang, et al. EBSD characterization of bainite/martensite dual phase microstructure in steel and its effect on properties[J]. Heat Treatment of Metals, 2019, 44(10): 147-151. [41]乔志霞, 刘永长. 低合金超高强度钢中的相变及组织控制[J]. 金属热处理, 2015, 40(1): 12-22. Qiao Zhixia, Liu Yongchang. Phase transformation and microstructural control of low alloyed ultra-high strength steels[J]. Heat Treatment of Metals, 2015, 40(1): 12-22. [42]张翔云. 700 MPa级海工钢组织调控及低温韧性研究[D]. 鞍山: 辽宁科技大学, 2020. [43]袁胜福. 高性能海洋工程用钢组织调控及力学性能研究[D]. 北京: 北京科技大学, 2020. [44]王腾飞. E级高强船板钢轧制及热处理工艺研究[D]. 沈阳: 东北大学, 2017. [45]Ledermueller C, Zhu H T, Li H J, et al. An initial report on the structure-property relationships of a high-strength low-alloy steel subjected to advanced thermomechanical processing in ferrite[J]. Steel Research Internationa, 2020, 91(7): 1900596. [46]杨德明. 铌微合金化Q345B钢板生产工艺开发与应用[J]. 山东冶金, 2007, 29(1): 16-18. Yang Deming. Development and application of production process for niobium microalloy Q345B plate[J]. Shandong Metallurgy, 2007, 29(1): 16-18. [47]陈 刚, 罗小兵, 柴 锋, 等. 轧制加热温度对高强度低合金钢组织及冲击性能的影响[J]. 金属热处理, 2022, 47(4): 116-121. Chen Gang, Luo Xiaobing, Chai Feng, et al. Influence of rolling and heating temperature on microstructure and impact property of a high strength low alloy steel[J]. Heat Treatment of Metals, 2022, 47(4): 116-121. [48]杨春卫, 宋增强. 80 mm调质海工钢EH550的生产开发与应用[J]. 中国金属通报, 2021, 75(5): 151-152. Yang Chunwei, Song Zengqiang. Production development and application of 80 mm quenched and tempered offshore steel EH550[J]. China Metals Bulletin, 2021, 75(5): 151-152. [49]邬丽莲. NVF550级海洋工程结构用钢的控轧后冷却及回火工艺研究[D]. 西安: 西安建筑科技大学, 2013. [50]董春宇, 赵宪明, 周晓光, 等. 冷却工艺参数对海洋工程用H型钢组织性能的影响[J]. 东北大学学报(自然科学版), 2019, 40(4): 478-482. Dong Chunyu, Zhao Xianming, Zhou Xiaoguo, et al. Effect of cooling process parameters on microstructure and mechanical properties of marine engineering H-beam steel[J]. Journal of Northeastern University (Natural Science), 2019, 40(4): 478-482. [51]邢 军. 低合金高强度H型钢轧后控冷工艺研究[D]. 马鞍山: 安徽工业大学, 2013. [52]姜中行, 麻庆申, 罗文彬. 355MPa级船用钢板试制[J]. 宽厚板, 2004, 10(5): 22-25. Jiang Zhongxing, Ma Qingshen, Luo Wenbin. Trial-production of 355 MPa class ship plate[J]. Wide and Heavy Plate, 2004, 10(5): 22-25. [53]王小勇. 海洋工程用低合金高强度超厚钢板的淬透性与强韧性研究[D]. 北京: 钢铁研究总院, 2013. [54]江乾坤. 热轧H型钢控制冷却工艺研究[J]. 山西冶金, 2019, 42(2): 56-58. Jiang Qiankun. Control cooling technology of hot rolled H-steel[J]. Shanxi Metallurgy, 2019, 42(2): 56-58. [55]王国栋. 以超快速冷却为核心的新一代TMCP技术[J]. 上海金属, 2008, 30(2): 1-5. Wang Guodong. The new generation TMCP with the key technology of ultra-fast cooling[J]. Shanghai Metals, 2008, 30(2): 1-5. [56]王昭东, 王国栋. 热轧钢材一体化组织性能控制技术[J]. 河北冶金, 2019, 26(4): 1-6. Wang Zhaodong, Wang Guodong. Integrated optimization of microstructure and properties of hot rolled steel[J]. Hebei Metallurgy, 2019, 26(4): 1-6. [57]任蕰佳, 苗庆伟, 刘联胜, 等. 喷雾冷却技术在工业炉领域应用的研究综述[J]. 工业炉, 2020, 42(4): 21-24, 30. Ren Wenjia, Miao Qingwei, Liu Liansheng, et al. Review on application of spray cooling technology in field of industrial furnace[J]. Industrial Furnace, 2020, 42(4): 21-24, 30. [58]陈 松. 大型H型钢控制冷却研究[D]. 唐山: 华北理工大学, 2017. [59]谈群峰. 热轧H型钢控制冷却工艺研究[J]. 山西冶金, 2021, 44(1): 38-39, 65. Tan Qunfeng. Control cooling technology of hot rolled H-steel[J]. Shanxi Metallurgy, 2021, 44(1): 38-39, 65. |