[1]顾恺迪, 高志良, 李世江, 等. 7系铝合金在上海轨道交通车辆的应用现状及适用性分析[J]. 城市轨道交通研究, 2022, 25(9): 141-145. Gu Kaidi, Gao Zhiliang, Li Shijiang, et al. Application status and adaptability analysis of 7 series aluminum alloy in shanghai rail transit vehicle[J]. Urban Mass Transit, 2022, 25(9): 141-145. [2]邓 鑫, 金文福, 齐芃芃, 等. 轨道交通用7×××系铝合金接头组织性能浅析[J]. 有色金属加工, 2022, 51(6): 15-18, 57. Deng Xin, Jin Wenfu, Qi Pengpeng, et al. Analysis on microstructure and properties of 7××× series aluminum alloy joints for rail transit[J]. Nonferrous Metals Processing, 2022, 51(6): 15-18, 57. [3]江大发, 周 礼, 陈晶晶, 等. 7000系铝合金在轨道交通车辆车体中的应用[J]. 电力机车与城轨车辆, 2019, 42(1): 31-35. Jiang Dafa, Zhou Li, Chen Jingjing, et al. Application of 7000 series aluminum alloy in rail transit vehicle car body[J]. Electric Locomotives and Mass Transit Vehicles, 2019, 42(1): 31-35. [4]王 伟, 张 勇, 余 敏, 等. 从航空看轨道交通高强铝合金的发展趋势[J]. 材料导报, 2018, 32(S1): 415-418. Wang Wei, Zhang Yong, Yu Min, et al. Development trend of high strength aluminum alloy for rail transit from the perspective of its application in aviation[J]. Materials Reports, 2018, 32(S1): 415-418. [5]Zhao P H, Wu X L, Liu Y, et al. Microstructure, mechanical properties and corrosion behavior of commercial 7N01 alloys[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 778-789. [6]Li S, Dong H G, Li P, et al. Effect of repetitious non-isothermal heat treatment on corrosion behavior of Al-Zn-Mg alloy[J]. Corrosion Science, 2018, 131(1): 278-289. [7]章淑芳, 王晓敏, 陈 辉, 等. 7003铝合金动车柜体的应力腐蚀开裂[J]. 材料工程, 2015, 43(7): 105-112. Zhang Shufang, Wang Xiaomin, Chen Hui, et al. Stress corrosion cracking of cabinet of 7003 aluminum alloy[J]. Journal of Materials Engineering, 2015, 43(7): 105-112. [8]晋军辉, 罗彦云, 孙永鹏. A型地铁车辆铝合金轴箱体的研制[J]. 电力机车与城轨车辆, 2006, 29(4): 21-23. Jin Junhui, Luo Yanyun, Sun Yongpeng. Development of aluminum alloy axle box body for type A metro vehicle[J]. Electric Locomotives and Mass Transit Vehicles, 2006, 29(4): 21-23. [9]薛文根. 铝合金材料在轨道车辆轴箱体上的应用[J]. 机车车辆工艺, 2020, 341(1): 10-11. Xue Wengen. Application of aluminum alloy in axle box body for the railcar[J]. Locomotive and Rolling Stock Technology, 2020, 341(1): 10-11. [10]戴晓超, 张英波, 王泽飞, 等. 400 km/h高速列车轴箱体有限元仿真[J]. 电焊机, 2020, 50(1): 97-101. Dai Xiaochao, Zhang Yingbo, Wang Zefei, et al. Finite element simulation on axle-box of 400 km/h high-speed train[J]. Electric Welding Machine, 2020, 50(1): 97-101. [11]龙 腾. 下一代地铁列车铝合金轴箱体强度研究[D]. 北京: 北京交通大学, 2019. Long Teng. Research on alloy aluminum axlebox strength of the next generation subway[D]. Beijing: Beijing Jiaotong University, 2019. [12]Ren X, Zhang L, Chen Y, et al. Tensile and fatigue properties of 7050 aluminum alloy axle box used for high speed train[C]//Chinese Materials Conference, 2012, 27: 914-922. [13]龙 帅. 铝合金轴箱体锻造成形工艺设计及优化[D]. 重庆: 重庆大学, 2017. Long Shuai. Forging forming technology and optimization for aluminum alloy axle box body[D]. Chongqing: Chongqing University, 2017. [14]杨 昭. 铝合金轴箱体锻造工艺设计与金属变形规律研究[D]. 济南: 山东大学, 2018. Yang Zhao. Investigation of deformation behavior and design of forging process for aluminum alloy axis box[D]. Jinan: Shandong University, 2018. [15]徐 潇, 杨 昭, 程仁策, 等. 高速列车铝合金轴箱体锻造工艺设计及材料变形规律[J]. 锻压技术, 2018, 43(1): 14-19. Xu Xiao, Yang Zhao, Cheng Rence, et al. Forging process design and material deformation rules of aluminum alloy axle box body for high speed train[J]. Forging and Stamping Technology, 2018, 43(1): 14-19. [16]刘月明, 林高用, 王晶莉, 等. 热处理对高铁轴箱体用7050铝合金锻件组织与性能的影响[J]. 轻合金加工技术, 2018, 46(2): 67-73. Liu Yueming, Lin Gaoyong, Wang Jingli, et al. Effects of heat treatment on microstructure and properties of 7050 aluminum alloy forging for the axle box body of the high speed train[J]. Light Alloy Fabrication Technology, 2018, 46(2): 67-73. [17]蒲全卫, 刘平军, 罗彦云, 等. 锻铝合金轴箱体研制[J]. 电力机车与城轨车辆, 2021, 44(1): 28-26. Pu Quanwei, Liu Pingjun, Luo Yanyun, et al. Development of forging aluminum alloy axle box body[J]. Electric Locomotives and Mass Transit Vehicles, 2021, 44(1): 28-26. [18]Holroyd N J H, Scamans G M. Stress corrosion cracking in 7××× aluminum alloys in saline environments[J]. Metallurgical and Materials Transactions A, 2013, 44(3): 1230-1253. [19]Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design, 2014, 56(4): 862-871. [20]Peng G S, Gu Y C, Chen S Y, et al. Research progress of relationship between multi-scale second phase particles and properties of Al-Zn-Mg-Cu alloys[J]. Rare Metal Materials and Engineering, 2021, 50(3): 775-786. [21]熊柏青, 李锡武, 张永安, 等. 高强韧低淬火敏感性7×××铝合金的发展[J]. 中国材料进展, 2014, 33(2): 114-119. Xiong Baiqing, Li Xiwu, Zhang Yongan, et al. Development of 7××× series aluminum alloy with high strength high toughness and low quench sensitivity[J]. Materials China, 2014, 33(2): 114-119. [22]邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29(9): 2115-2141. Deng Yunlai, Zhang Xinming. Development of aluminium and aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115-2141. [23]AA TEAL-1-2015: International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys[S]. [24]刘 园. 高强耐蚀7050铝合金成分优化与时效行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. Liu Yuan. Composition optimization and aging behavior of high strength and corrosion resistance 7050 aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2016. [25]鲁法云, 赵 凤, 穆 楠, 等. 7050铝合金均匀化过程中组织转变[J]. 材料热处理学报, 2015, 36(5): 17-23. Lu Fayunn, Zhao Feng, Mu Nan, et al. Microstructure evolution of 7050 aluminum alloy during homogenization[J]. Transactions of Materials and Heat Treatment, 2015, 36(5): 17-23. [26]王 晨, 周 静, 杨志峰, 等. 7050铝合金铸锭均匀化过程中相的转变[J]. 轻合金加工技术, 2007, 352(1): 23-24. Wang Chen, Zhou Jing, Yang Zhifeng, et al. Change of the microstructure of 7050 aluminum alloy ingot during homogenization annealing[J]. Light Alloy Fabrication Technology, 2007, 352(1): 23-24. [27]蒋秋妹, 莫灼强, 刘 莹, 等. 大规格铸态7050铝合金的双级均匀化处理工艺[J]. 金属热处理, 2019, 44(5): 153-157. Jang Qiumei, Mo Zhuoqiang, Liu Ying, et al. Two-stage homogenization process for large scale as-cast 7050 aluminum alloy[J]. Heat Treatment of Metals, 2019, 47(8): 21-25. [28]滕广标. 7050铝合金铸锭均匀化热处理[J]. 轻合金加工技术, 2019, 47(8): 21-25. Teng Guangbiao. Homogenization heat treatment of 7050 aluminum alloy ingot[J]. Light Alloy Fabrication Technology, 2019, 47(8): 21-25. [29]贾品峰, 曹以恒, 何立子, 等. 三级均匀化对7050铝合金微观组织和性能的影响[J]. 稀有金属, 2014, 38(5): 774-779. Jia Pinfeng, Cao Yiheng, He Lizi, et al. Microstructure and properties of 7050 aluminum alloy with three-step homogenization[J]. Chinese Journal of Rare Metals, 2014, 38(5): 774-779. [30]崔金栋. 7050铝合金大锻件锻造工艺仿真与再结晶组织模拟[D]. 长沙: 中南大学, 2006. Cui Jindong. 7050 aluminum alloy large forgings forging process simulation and recrystallization microstructure simulation[D]. Changsha: Central South University, 2006. [31]郑斯佳, 周 杰, 李 杰, 等. 某大型航空铝合金锻件局部加载成形质量控制[J]. 锻压技术, 2017, 42(9): 1-5. Zheng Sijia, Zhou Jie, Li Jie, et al. Quality control on local loading of a large air aluminum-alloy forging[J]. Forging and Stamping Technology, 2017, 42(9): 1-5. [32]吴道祥, 周 杰, 马鹏程, 等. 基于响应面法的7050铝合金筋板类锻件热模锻成形工艺优化[J]. 中南大学学报(自然科学版), 2017, 48(3): 601-607. Wu Daoxiang, Zhou Jie, Ma Pengcheng, et al. Optimization of hot die forging process parameters of 7050 aluminum alloy rib-web type components based on response surface method[J]. Journal of Central South University (Science and Technology), 2017, 48(3): 601-607. [33]Hu Jianliang, Zhao Zihan, Dong Mengxiao, et al. Microstructure homogeneity regulation of 7050 aluminum forgings by surface cumulative plastic deformation[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(9): 2814-2827. [34]宋丰轩, 张新明, 刘胜胆, 等. 固溶制度对7050铝合金微观组织和腐蚀性能的影响[J]. 航空材料学报, 2013, 33(4): 14-21. Song Fengxuan, Zhang Xinmin, Liu Shengdan, et al. Effects of solution heat treatment on microstructure and corrosion properties of 7050 Al alloy[J]. Journal of Aeronautical Materials, 2013, 33(4): 14-21. [35]张新明, 何道广, 刘胜胆, 等. 多级强化固溶处理对7050铝合金厚板强度和断裂韧性的影响[J]. 中国有色金属学报, 2012, 22(6): 1546-1554. Zhang Xinming, He Daoguang, Liu Shengdan, et al. Effects of multi-stage promotively-solutionizing treatment on strength and fracture toughness of 7050 aluminum alloy thick plate[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(6): 1546-1554. [36]韩念梅, 张新明, 刘胜胆, 等. 固溶处理对7050铝合金强度和断裂韧性的影响[J]. 中南大学学报(自然科学版), 2012, 43(3): 855-863. Han Nianmei, Zhang Xinming, Liu Shengdan, et al. Influence of solution heat treatment on strength and fracture toughness of aluminum alloy 7050[J]. Journal of Central South University (Science and Technology), 2012, 43(3): 855-863. [37]宋丰轩, 张新明, 刘胜胆, 等. 预拉伸对7050铝合金腐蚀性能的影响. 中南大学学报(自然科学版), 2013, 44(5): 1791-1797. Song Fengxuan, Zhang Xinming, Liu Shengdan, et al. Effects of pre-stretching on corrosion resistance of 7050 aluminum alloy[J]. Journal of Central South University (Science and Technology), 2013, 44(5): 1791-1797. [38]韩念梅, 张新明, 刘胜胆, 等. 双级时效对7050铝合金厚板断裂韧性的影响. 中南大学学报(自然科学版), 2011, 42(3): 623-628. Han Nianmei, Zhang Xinming, Liu Shengdan, et al. Influence of two-step aging on fracture toughness of 7050 aluminum alloy plate[J]. Journal of Central South University (Science and Technology), 2011, 42(3): 623-628. [39]Wang D, Ni D R, Ma Z Y. Effect of pre-strain and two-step aging on micro structure and stress corrosion cracking of 7050 alloy[J]. Materials Science and Engineering A, 2008, 494: 360-366. [40]李 晨, 张新全, 谢林军, 等. 淬火水温对7050铝合金残余应力及力学性能的影响[J]. 轻合金加工技术, 2022, 50(5): 60-64. Li Chen, Zhang Xinquan, Xie Linjun, et al. Effect of water quenching temperature on residual stress and mechanical properties of 7050 aluminum alloy[J]. Light Alloy Fabrication Technology, 2022, 50(5): 60-64. [41]王 浩, 肖纳敏, 李惠曲, 等. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80. Wang Hao, Xiao Namin, Li Huiqu, et al. Modeling of residual stress evolution of 7050 aluminium alloy component during heat treatment and cold forming[J]. Journal of Materials Engineering, 2021, 49(8): 72-80. [42]孙燕杰, 龚 海, 刘瑶琼, 等. 分步冷压对7050铝合金T形锻件残余应力的影响[J]. 热加工工艺, 2022, 51(1): 65-69. Sun Yanjie, Gong Hai, Liu Yaoqiong, et al. Influence of sectional cold pressing on residual stress of 7050 aluminum alloy T-shaped forgings[J]. Hot Working Technology, 2022, 51(1): 65-69. [43]姚诗杰, 夏伟军, 袁武华, 等. 基于分段冷压法7050大型铝合金锻件残余应力的消减[J]. 机械工程材料, 2018, 42(1): 84-88. Yao Shijie, Xia Weijun, Yuan Wuhua, et al. Residual stress reduction of 7050 large-scale aluminum alloy forging based on segmented cold-pressing method[J]. Materials for Mechanical Engineering, 2018, 42(1): 84-88. [44]吴锡伟, 吴道祥, 许开春. 7050铝合金长轴筋板类锻件淬火残余应力消减工艺研究[J]. 铝加工, 2021, 261(4): 27-30. Wu Xiwei, Wu Daoxiang, Xu Kaichun. Research on quenching residual stress reduction technology for 7050 aluminum alloy long-axis reinforced plate forgings[J]. Aluminium Fabrication, 2021, 261(4): 27-30. [45]刘胜胆, 尹邦文, 李东锋, 等. Zn与Mg质量比对Al-Zn-Mg-Cu合金淬火敏感性的影响[J]. 中南大学学报: 自然科学版, 2016, 47(7): 2242-2248. Liu Shengdan, Yin Bangwen, Li Dongfeng, et al. Effect of mass ratio of Zn to Mg on quench sensitivity of Al-Zn-Mg-Cu aluminum alloys[J]. Journal of Central South University (Science and Technology), 2016, 47(7): 2242-2248. [46]熊柏青, 李锡武, 张永安, 等. 新型高强韧低淬火敏感性Al-7. 5Zn-1. 65Mg-1. 4Cu-0. 12Zr合金[J]. 中国有色金属学报, 2009, 19(9): 1539-1547. Xiong Baiqing, Li Xiwu, Zhang Yongan, et al. Novel Al-7.5Zn-1.65Mg-1.4Cu-0.12Zr alloys with high strength high toughness and low quench sensitivity[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(9): 1539-1547. [47]Liu S, Li Q, Lin H, et al. Effect of quench-induced precipitation on microstructure and mechanical properties of 7085 aluminum alloy[J]. Materials and Design, 2017, 132: 119-128. [48]焦慧彬, 陈康华, 王会平, 等. Cu对Al-Zn-Mg-xCu合金组织、断裂及淬透性的影响[J]. 湖南大学学报(自然科学版), 2018, 45(12): 15-23. Jiao Huibin, Chen Kanghua, Wang Huiping, et al. Effect of Cu on microstructure, fracture and hardenability of Al-Zn-Mg-xCu alloy[J]. Journal of Hunan University (Natural Sciences), 2018, 45(12): 15-23. [49]陈善达, 焦慧彬, 陈送义, 等. Zr质量分数对7085铝合金组织和性能各向异性的影响[J]. 中南大学学报(自然科学版), 2018, 49(6): 1349-1357. Chen Shanda, Jiao Huibin, Chen Songyi, et al. Effects of Zr content on microstructure properties of anisotropy of 7085 aluminum alloy[J]. Journal of Central South University (Science and Technology), 2018, 49(6): 1349-1357. [50]李瑞卿, 李晓谦, 陈平虎, 等. 超声铸造7085铝合金在热处理过程中的相变行为[J]. 材料工程, 2016, 44(6): 24-30. Li Ruiqing, Li Xiaoqian, Chen Pinghu, et al. Phase transformation behavior of ultrasonic-treated 7085 aluminum alloy during heat treatment[J]. Journal of Materials Engineering, 2016, 44(6): 24-30. [51]Chen Songyi, Chen Kanghua, Peng Guosheng, et al. Effect of initial microstructure on hot workability of 7085 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 956-963. [52]莫纪平, 程晓农, 邓平安, 等. 多向压缩对7085铝合金挤压材组织和力学性能的影响[J]. 稀有金属材料与工程, 2015, 44(8): 2003-2006. Mo Jiping, Cheng Xiaonong, Deng Pingan, et al. Effect of multi-axial compression on microstructure and mechanical properties of 7085 aluminum alloy extrusions[J]. Rare Metal Materials and Engineering, 2015, 44(8): 2003-2006. [53]黄湘龙. 7A85铝合金航空接头等温锻造组织演变模拟与实验研究[D]. 长沙: 中南大学, 2013. Huang Xianglong. Microstructure evolution simulation and experimental study of 7A85 aluminum aviation joint forging by isothermal forging process[D]. Changsha: Central South University, 2013. [54]张 杰. 7085铝合金热变形组织演变的数值模拟与实验研究[D]. 北京: 北京有色金属研究总院, 2018. Zhang Jie. Numerical simulation and experimental study on microstructure evolution of 7085 aluminum alloy during hot deformation[D]. Changsha: General Research Institute for Nonferrous Metals, 2018. [55]陈送义. 7085高强铝合金锻造成形和组织性能研究[D]. 长沙: 中南大学, 2013. Chen Songyi. Studies on forging forming, microstructure and properties of high-strength 7085 aluminum alloy[D]. Changsha: Central South University, 2013. [56]赵建吉, 许晓静, 谈 成, 等. 强化固溶处理对7085铝合金组织与性能的影响[J]. 材料热处理学报, 2015, 36(11): 101-105. Zhao Jianji, Xu Xiaojing, Tan Cheng, et al. Effect of enhanced-solid-solution process on microstructure and properties of 7085 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(11): 101-105. [57]肖代红, 陈康华, 罗伟红. 固溶热处理对AA7085铝合金组织与性能的影响[J]. 稀有金属材料与工程, 2010, 39(3): 494-497. Xiao Daihong, Chen Kanghua, Luo Weihong. Effect of solution heat treatment on microstructure and properties of AA7085 aluminum alloys[J]. Rare Metal Materials and Engineering, 2010, 39(3): 494-497. [58]Liu S D, Li Q, Lin H Q, et al. Effect of quench-induced precipitation on microstructure and mechanical properties of 7085 aluminum alloy[J]. Materials and Design, 2017, 132(1): 119-128. [59]Chen Songyi, Chen Kanghua , Dong Pengxuan, et al. Effect of a novel three-step aging on strength, stress corrosion cracking and microstructure of AA7085[J]. Journal of Central South University, 2016, 23(8): 1858-1862. [60]Chen Songyi, Chen Kanghua, Dong Pengxuan , et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Materials and Design, 2012, 35(3): 93-98. [61]Zou Y, Cao L F, Wu X D, et al. Effect of ageing temperature on microstructure, mechanical property and corrosion behavior of aluminum alloy 7085[J]. Journal of Alloys and Compounds, 2020, 823: 153792. [62]Wang Y C, Cao L F, Wu X D, et al. Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085[J]. Journal of Alloys and Compounds, 2020, 814: 152264. [63]代 伟, 易幼平, 崔金栋. 冷压缩法消减7A85铝合金锻件淬火残余应力研究[J]. 中南大学学报(自然科学版), 2015, 46(5): 1609-1614. Dai Wei, Yi Youping, Cui Jindong. Reduction of quenching residual stress for 7A85 aluminum alloy forging by cold compression[J]. Journal of Central South University (Science and Technology), 2015, 46(5): 1609-1614. [64]罗国云. 7085铝合金大锻件多向锻造均匀性调控及淬火残余应力消减工艺研究[D]. 长沙: 中南大学, 2014. Luo Guoyun. Multidirectional forging uniformity control and quenching residual stress reduction process research of 7085 aluminum alloy large forgings[D]. Changsha: Central South University, 2014. [65]牛关梅, 李 伟, 王军强, 等. 7085铝合金自由锻厚板淬火-分段冷压残余应力演变规律研究[J]. 热加工工艺, 2019, 48(3): 140-144. Niu Guanmei, Li Wei, Wang Junqiang, et al. Investigation on residual stress evolution of 7085 aluminum alloy free forging plate after quenching-subsection cold pressing[J]. Hot Working Technology, 2019, 48(3): 140-144. |