[1]陈 平, 李俊玲, 邵天敏, 等. 考虑表面张力影响的表面织构最优参数分析[J]. 机械工程学报, 2016, 52(19): 123-131. Chen Ping, Li Junling, Shao Tianmin, et al. Optimal analysis of geometric parameters of surface texture with surface tension considered[J]. Journal of Mechanical Engineering, 2016, 52(19): 123-131. [2]温俊霞, 余 磊, 曹 睿, 等. 回火处理对一种新型钴基合金表面结构和压缩力学性能的影响[J]. 材料导报, 2021, 35(S1): 381-385. Wen Junxia, Yu Lei, Cao Rui, et al. Effect of temper treatment on the surface structure and the compressive mechanical properties of a new cobalt-based alloy[J]. Materials Reports, 2021, 35(S1): 381-385. [3]徐仰涛, 王永红, 马宏利. 钴及钴基合金拉伸和压缩变形机理的研究现状[J]. 材料导报, 2020, 34(19): 19117-19121. Xu Yangtao, Wang Yonghong, Ma Hongli. Research status of tensile and compression deformation mechanism of cobalt and cobalt based alloys[J]. Materials Reports, 2020, 34(19): 19117-19121. [4]Cui G J, Liu H Q, Li S, et al. Effect of Ni, W and Mo on the microstructure, phases and high-temperature sliding wear performance of CoCr matrix alloys[J]. Science and Technology of Advanced Materials, 2020, 21(1): 229-241. [5]Wang L C, Li D Y. Effects of yttrium on microstructure, mechanical properties and high-temperature wear behavior of cast Stellite 6 alloy[J]. Wear, 2003, 255: 535-544. [6]Hongnga P T, 刘洪喜, 张晓伟, 等. 模具钢表面Co/TiC熔覆层的组织与高温磨损性能[J]. 光学精密工程, 2013, 21(8): 2048-2055. Hongnga P T, Liu Hongxi, Zhang Xiaowei, et al. Microstructures and high-temperature wear behaviors of Co/TiC laser coatings on die steel[J]. Optics and Precision Engineering, 2013, 21(8): 2048-2055. [7]Prasad C D, Joladarashi S, Ramesh M R, et al. Effect of microwave heating on microstructure and elevated temperature adhesive wear behavior of HVOF deposited CoMoCrSi-Cr3C2 coating[J]. Surface and Coatings Technology, 2019, 374: 291-304. [8]钱 钰, 崔功军, 卞灿星, 等. WS2增强CoCrTi复合材料的制备及高温摩擦学性能[J]. 金属热处理, 2021, 46(12): 94-99. Qian Yu, Cui Gongjun, Bian Canxing, et al. Preparation and high-temperature tribological properties of WS2 reinforced CoCrTi composites[J]. Heat Treatment of Metals, 2021, 46(12): 94-99. [9]Ren Q C, Cui G J, Li T Y, et al. High-temperature wear behavior of cobalt matrix composites reinforced by LaF3 and CeO2[J]. Tribology Letters, 2021, 69(4): 149. [10]Li J L, Xiong D S, Huang Z J, et al. Effect of Ag and CeO2 on friction and wear properties of Ni-base composite at high temperature[J]. Wear, 2009, 267(1/4): 576-584. [11]陈建敏, 卢小伟, 李红轩, 等. 宽温域固体自润滑涂/覆层材料的研究进展[J]. 摩擦学学报, 2014, 34(5): 592-600. Chen Jianmin, Lu Xiaowei, Li Hongxuan, et al. Progress of solid self-lubricating coating over a wide range of temperature[J]. Tribology, 2014, 34(5): 592-600. [12]Li Y F, Ouyang J H, Sasaki S. Tribological properties of spark-plasma-sintered ZrO2(Y2O3)-Al2O3-BaxSr1-xSO4 (x=0.25, 0.5, 0.75) composites at elevated temperature[J]. Tribology Letters, 2012, 45(2): 291-300. [13]Murakami T, Ouyang J H, Umeda K, et al. High-temperature friction properties of BaSO4 and SrSO4 powder films formed on Al2O3 and stainless steel substrates[J]. Materials Science and Engineering A, 2006, 432(1/2): 52-58. [14]Murakami T, Ouyang J, Umeda K, et al. High-temperature friction and wear properties of X-BaSO4 (X: Al2O3, NiAl) composites prepared by spark plasma sintering[J]. Materials Transactions, 2005, 46(2): 182-185. [15]Li Y F, Yin H, Li X L, et al. Friction and wear properties of spark plasma sintering NiCr-SrSO4 composites at elevated temperatures in sliding against alumina ball[J]. Tribology Letters, 2016, 64(2): 29. [16]Liu F, Yi G W, Wang W Z, et al. The influence of SrSO4 on the tribological properties of NiCr-Al2O3 cermet at elevated temperatures[J]. Ceramics International, 2014, 40(2): 2799-2807. [17]Meng J S, Chen M X, Shi X P, et al. Effect of Co on oxidation and hot corrosion behavior of two nickel-based superalloys under Na2SO4-NaCl at 900 ℃[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(8): 2402-2414. [18]肖广涛, 刘 颖, 叶金文, 等. (W, Ta)C复合碳化物含量对WC-10Co硬质合金显微结构和力学性能的影响[J]. 粉末冶金技术, 2013, 31(5): 355-359. Xiao Guangtao, Liu Ying, Ye Jinwen, et al. The influence of different content of (W, Ta) C composite carbide on microstructure and properties of WC-10Co cemented carbide[J]. Powder Metallurgy Technology, 2013, 31(5): 355-359. [19]Zhang A J, Han J S, Su B, et al. A promising new high temperature self-lubricating material: CoCrFeNiS0. 5 high entropy alloy[J]. Materials Science and Engineering A, 2018, 731: 36-43. [20]Cui G J, Liu H Q, Li S, et al. Design and high-temperature tribological properties of CoCrW with rare earth fluoride composites[J]. Journal of Materials Research and Technology, 2020, 9(2): 2402-2411. [21]Ouyang J H, Sasaki S, Umeda K. The friction and wear characteristics of low-pressure plasma-sprayed ZrO2-BaCrO4 composite coating at elevated temperatures[J]. Surface and Coatings Technology, 2002, 154(2): 131-139. [22]Su W M, Niu S P, Huang Y C, et al. Friction and wear properties of plasma-sprayed Cr2O3-BaCrO4 coating at elevated temperatures[J]. Ceramics International, 2022, 48(6): 8696-8705. [23]Khan M A, Sundarrajan S, Duraiselvam M, et al. Sliding wear behaviour of plasma sprayed coatings on nickel based superalloy[J]. Surface Engineering, 2017, 33(1): 35-41. [24]程书帅, 崔功军, 李方舟, 等. 纳米SiC增强CoCrMo高温抗磨复合材料及摩擦学性能[J]. 摩擦学学报, 2022, 42(6): 1127-1137. Cheng Shushuai, Cui Gongjun, Li Fangzhou, et al. High-temperature wear resistant CoCrMo matrix composites reinforced by nano-SiC and tribological properties[J]. Tribology, 2022, 42(6): 1127-1137. [25]Guo H J, Han M M, Chen W Y, et al. Microstructure and properties of VN/Ag composite films with various silver content[J]. Vacuum, 2017, 137: 97-103. |