[1]Li H B, Jiao W C, Feng H, et al. Influence of austenitizing temperature on the microstructure and corrosion resistance of 55Cr18Mo1VN high-nitrogen plastic mould steel[J]. Acta Metallurgica Sinica (English Letters), 2016, 29: 1148-1160. [2]徐海峰, 曹文全, 俞 峰, 等. 国内外高氮马氏体不锈轴承钢研究现状与发展[J]. 钢铁, 2017, 52(1): 53-63. Xu Haifeng, Cao Wenquan, Yu Feng, et al. Research status and development of high nitrogen martensite stainless bearing steel at home and abroad[J]. Iron and Steel, 2017, 52(1): 53-63. [3]郑 凯, 曹文全, 俞 峰, 等. 高温不锈渗碳轴承钢的研发现状与进展[J]. 钢铁, 2022, 57(7): 125-136. Zheng Kai, Cao Wenquan, Yu Feng, et al. The research and development status and progress of high-temperature stainless carburized bearing steel[J]. Iron and Steel, 2022, 57(7): 125-136. [4]Horovitz M B, Beneduce Neto F, Garbogini A, et al. Nitrogen bearing martensitic stainless steels: Microstructure and properties[J]. ISIJ International, 1996, 36(7): 840-845. [5]Kostina M, Bannykh O, Blinov V. Special features of steels alloyed with nitrogen[J]. Metal Science and Heat Treatment, 2000, 42: 459-462. [6]郑善举, 杨卯生, 张启富, 等. 氮元素对马氏体不锈钢组织和性能的影响[J]. 材料热处理学报, 2017, 38(1): 100-105. Zheng Shanju, Yang Maosheng, Zhang Qifu, et al. Effect of nitrogen on microstructure and properties of martensite stainless steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(1): 100-105. [7]冯 浩, 姜周华, 李花兵, 等. 淬火温度对30Cr15Mo1N高氮轴承钢组织和性能的影响[J]. 钢铁, 2017, 52(9): 92-98. Feng Hao, Jiang Zhouhua, Li Huabing, et al. The effect of quenching temperature on the microstructure and properties of 30Cr15Mo1N high nitrogen bearing steel[J]. Iron and Steel, 2017, 52(9): 92-98. [8]李 凡. GCr15轴承钢热轧及球化退火组织性能研究[D]. 沈阳: 东北大学, 2014. [9]Todorov R, Nikolov M. Technological conditions for spheroidizing pearlite in wrought iron[J]. Metal Science and Heat Treatment, 1969, 11(1): 71-73. [10]Wang B Q, Song X Y, Peng H F. Design of a spheroidization processing for ultrahigh carbon steels containing Al[J]. Materials and Design, 2007, 28(2): 562-568. [11]Lü Z Q, Wang B, Wang Z H, et al. Effect of cyclic heat treatments on spheroidizing behavior of cementite in high carbon steel[J]. Materials Science and Engineering A, 2013, 574: 143-148. [12]毛 磊, 刘景荣, 曹荫之. GCr15钢温变形对球化退火的影响[J]. 东北工学院学报, 1993, 14(2): 193-197. Mao Lei, Liu Jingrong, Cao Yinzhi. The effect of temperature deformation on spheroidization annealing of GCr15 steel[J]. Journal of Northeast University of Technology, 1993, 14(2): 193-197. [13]王博卉, 徐太旭, 路 明, 等. GCr15SiMo轴承钢球化退火过程的碳化物演变[J]. 金属热处理, 2023, 48(4): 60-66. Wang Bohui, Xu Taixu, Lu Ming, et al. Carbide evolution of GCr15SiMo bearing steel during spheroidizing annealing process[J]. Heat Treatment of Metals, 2023, 48(4): 60-66. [14]尹德福, 汪开忠, 丁 雷, 等. 球化退火工艺对GCr15轴承钢组织和疲劳性能的影响[J]. 热处理, 2023, 38(1): 37-39. Yin Defu, Wang Kaizhong, Ding Lei, et al. Effect of spheroidizing process on microtruscture and fatigue property of GCr15 bearing steel[J]. Heat Treatment, 2023, 38(1): 37-39. [15]徐尚呈, 周立新, 刘光辉. GCr15轴承钢软化退火工艺[J]. 理化检验-物理分册, 2022, 58(8): 29-31, 76. Xu Shangcheng, Zhou Lixin, Liu Guanghui. Softening annealing process of GCr15 bearing steel[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2022, 58(8): 29-31, 76. [16]王洪利, 吴铖川, 杜思敏, 等. 退火软化对高强度钢300M组织及硬度的影响[J]. 金属热处理, 2021, 46(3): 100-103. Wang Hongli, Wu Chengchuan, Du Simin, et al. Effect of annealing soften on microstructure and hardness of high strength steel 300M[J]. Heat Treatment of Metals, 2021, 46(3): 100-103. [17]Perez M. Impact of annealing treatments on the softening and work hardening behaviour of Jethete M152 alloy for subsequent cold forming processes[J]. Materials Science and Engineering A, 2017, 690: 303-312. [18]Bénéteau A, Weisbecker P, Geandier G, et al. Austenitization and precipitate dissolution in high nitrogen steels: An in situ high temperature X-ray synchrotron diffraction analysis using the Rietveld method[J]. Materials Science and Engineering A, 2005, 393(1/2): 63-70. [19]陈 豪, 周天鹏, 陈泽军, 等. 回火温度对30Cr15Mo1N微观组织和力学性能影响[J]. 钢铁, 2019, 54(5): 60-67. Chen Hao, Zhou Tianpeng, Chen Zejun, et al. The effect of tempering temperature on the microstructure and mechanical properties of 30Cr15Mo1N[J]. Iron and Steel, 2019, 54(5): 60-67. [20]赵乃勤, 杨志刚, 冯运莉. 合金固态相变[M]. 长沙: 中南大学出版社, 2008. [21]Abdellaoui L, Chen Z W, Yu Y, et al. Parallel dislocation networks and Cottrell atmospheres reduce thermal conductivity of PbTe thermoelectrics[J]. Advanced Functional Materials, 2021, 31(20): 2101214. [22]冯 浩. 加压冶金制备高氮不锈轴承钢及其组织与性能研究[D]. 沈阳: 东北大学, 2019. [23]路晓辉. GCr15轴承钢组织稳定性调控及强韧性提高研究[D]. 上海: 上海交通大学, 2016. [24]王吉会, 郑俊萍, 刘家臣, 等. 材料力学性能[M]. 天津: 天津大学出版社. 2006. [25]Chandrasekaran D. Grain size and solid solution strengthening in metals[D]. Materialvetenskap, 2003. [26]Venables J. The martensite transformation in stainless steel[J]. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1962, 7(73): 35-44. |