[1]马利平. 微细刀具脉冲磁场强化处理方法及机理研究[D]. 北京: 北京理工大学, 2015. Ma Liping. Research on the method and mechanism of pulsed magnetic treatment of micro-tools[D]. Beijing: Beijing Institute of Technology, 2015. [2]郭 颂. 金属切削刀具的磁能强化技术研究[D]. 赣州: 江西理工大学, 2014. Guo Song. Research on strengthening technique of metal cutting tools by magnetization[D]. Ganzhou: Jiangxi University of Science and Technology, 2014. [3]周友梅, 徐鄂生, 丁宝民. 采用磁化处理, 延长刀具寿命[J]. 湖北工学院学报, 1995, 16(S1): 137-140. Zhou Youmei, Xu Esheng, Ding Baomin. Lengthen the cutter life using the magenetic treatment[J]. Journal of Hubei University of Technology, 1995, 16(S1): 137-140. [4]Mansori M E, Mkaddem A. Surface plastic deformation in dry cutting at magnetically assisted machining[J]. Surface and Coatings Technology, 2007, 202(4): 1118-1122. [5]Ma L P, Liang Z Q, Wang X B, et al. Effect of low-frequency pulsed magnetic treatment on micro-hardness of high speed steel[J]. Advanced Materials Research, 2013, 797: 663-666. [6]赵文祥, 姚洪民, 梁志强, 等. 脉冲磁场对高速钢刀具材料微观硬度的影响[J]. 北京理工大学学报, 2014, 34(7): 661-665. Zhao Wenxiang, Yao Hongmin, Liang Zhiqiang, et al. Effects of pulsed magnetic field on the micro-hardness of HSS cutting tool materials[J]. Transactions of Beijing Institute of Technology, 2014, 34(7): 661-665. [7]魏 灿. 脉冲电脉冲磁场处理对硬质合金力学性能及其刀具铣削磨损的影响研究[D]. 成都: 四川大学, 2018. Wei Can. Research on the effect of pulse electric pulse magnetic field treatment on the mechanical properties of cemented carbide and tool milling wear[D]. Chengdu: Sichuan University, 2018. [8]Fahmy Y, Hare T, Tooke R, et al. Effects of a pulsed magnetic treatment on the fatigue of low carbon steel[J]. Scripta Materialia, 1998, 38(9): 1355-1358. [9]Celik A, Fatih Yetim A, Alsaran A, et al. Effect of magnetic treatment on fatigue life of AISI 4140 steel[J]. Materials and Design, 2005, 26(8): 700-704. [10]赵永成, 张兆亮, 阎长罡, 等. 磁化处理对轴承钢接触疲劳性能的影响[J]. 机械工程材料, 2005, 29(3): 50-51. Zhao Yongcheng, Zhang Zhaoliang, Yan Changgang, et al. The effect of magnetization treating on the contact fatigue characteristic of GCr15 steel[J]. Materials for Mechanical Engineering, 2005, 29(3): 50-51. [11]Lü Baotong, Qiao Shengru, Sun Xiaoyan. Exploration on repairing fatigue damage of steel specimens with magnetic treatment[J]. Scripta Materialia, 1999, 40(7): 767-771. [12]张 铮. 脉冲电流对过共晶铝硅合金凝固组织及力学性能的影响[J]. 铸造技术, 2016, 37(2): 323-327. Zhang Zheng. Influence of pulse current on solidification structure and mechanical properties of hypereutectic Al-Si alloy[J]. Foundry Technology, 2016, 37(2): 323-327. [13]黄瑞明. 不同应力比对WC-Co硬质合金疲劳性能的影响[D]. 长沙: 湖南大学, 2014. Huang Ruiming. The influence of different stress ratios on fatigue behavior of WC-Co cemented carbide[D]. Changsha: Hunan University, 2014. [14]Li J, He P. Study on microstructure and properties of WC-Co cemented carbides[J]. Rare Metal Materials and Engineering, 1995, 24(3): 53-58. [15]李月明. 微塑性变形对TC4钛合金微观组织及力学性能的影响[D]. 镇江: 江苏大学, 2015. Li Yueming. The effect of microplastic deformation on the microstructure and mechanical properties of TC4 titanium alloy[D]. Zhenjiang: Jiangsu University, 2015. [16]Zhigang Z F. Correlation of transverse rupture strength of WC-Co with hardness[J]. International Journal of Refractory Metalsand Hard Materials, 2005, 23(2): 119-127. [17]王宏明, 李沛思, 郑 瑞, 等. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制[J]. 物理学报, 2015, 64(8): 291-298. Wang Hongming, Li Peisi, Zheng Rui, et al. Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites[J]. Acta Physica Sinica, 2015, 64(8): 291-298. [18]吴 甦, 赵海燕, 鹿安理, 等. 磁处理降低钢中残余应力的微观机理模型[J]. 清华大学学报(自然科学版), 2002, 42(2): 147-150. Wu Su, Zhao Haiyan, Lu Anli, et al. Micro-mechanism model of residual stress relaxation in steels by magnetic treatment[J]. Journal of Tsinghua University(Science and Technology), 2002, 42(2): 147-150. [19]Komanduri R, Hou Z B. Thermal modeling of the metal cutting process Part II: Temperature rise distribution due to frictional heat source at the tool-chip interface[J]. Intemational Journal of Mechanical Sciences, 2001, 43(1): 57-88. [20]王晓琴. 钛合金Ti6A14V高效切削刀具摩擦磨损特性及刀具寿命研究[D]. 济南: 山东大学, 2009. Wang Xiaoqin. Study on tribological behavior and tool life in Ti6A14V high performance machining[D]. Jinan: Shandong University, 2009. [21]林勇传, 何法文, 黄健友, 等. 蠕墨铸铁切削机理的探讨研究[J]. 机械设计与制造, 2017(8): 100-102. Lin Yongchuan, He Fawen, Huang Jianyou, et al. Analytical research of compacted graphite iron cutting mechanism[J]. Machinery Design and Manufacture, 2017(8): 100-102. [22]Kazuo Kumagai, Koshi Suzuki, Osamu Kamiya. Study on reduction in wear due to magnetization[J]. Wear, 1993, 162(2): 196-201. [23]简小刚, 陈金荣, 叶萍萍, 等. 直流磁场对载荷变化时铁磁性材料摩擦磨损的影响[J]. 中国矿业大学学报, 1999, 28(5): 35-38. Jian Xiaogang, Chen Jinrong, Ye Pingping, et al. Effects of DC magnetic field on friction and wear of ferromagnetic materials under different load[J]. Journal of China University of Mining and Technology, 1999, 28(5): 35-38. [24]孔二雷. 磁场环境中不同磁属性金属材料摩擦表面行为研究[D]. 洛阳: 河南科技大学, 2017. Kong Erlei. Effect of magnetic field on friction surface behavior of materials with different magnetic properties[D]. Luoyang: Henan University of Science and Technology, 2017. [25]陈俊云, 靳田野, 鹿 玲. CBN刀具材料的发展及其切削性能研究进展[J]. 制造技术与机床, 2015(3): 33-39. Chen Junyun, Jing Tianye, Lu Ling. Development and cutting performence of CBN tool[J]. Manufacturing Technology and Machine Tool, 2015(3): 33-39. [26]岳彩旭, 刘献礼, 王 宇, 等. 硬态切削与磨削工艺的表面完整性[J]. 工具技术, 2008, 42(7): 13-18. Yue Caixu, Liu Xianli, Wang Yu, et al. Surface integrity of hard cutting and grinding processes[J]. Tool Engineering, 2008, 42(7): 13-18. |