[1]王淑慧, 王 珊, 隋信举, 等. 7A75铝合金板材厚度方向的微观结构及性能[J]. 金属热处理, 2020, 45(9): 191-194. Wang Shuhui, Wang Shan, Sui Xinju, et al. Microstructure evolution and mechanical properties at different thickness of 7A75 aluminum alloy plate[J]. Heat Treatment of Metals, 2020, 45(9): 191-194. [2]Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design, 2014, 56: 862-871. [3]王少华, 马志峰, 张显峰, 等. 7A99铝合金锻件双级时效组织性能[J]. 航空材料学报, 2018, 38(1): 54-59. Wang Shaohua, Ma Zhifeng, Zhang Xianfeng, et al. Microstructure and properties of 7A99 aluminum alloy forging after two-step aging treatment[J]. Journal of Aeronautical Materials, 2018, 38(1): 54-59. [4]唐丽娜, 郭立杰, 张天德. 航天典型材料与构件的热处理技术研究与应用[J]. 金属热处理, 2018, 43(1): 1-5. Tang Lina, Guo Lijie, Zhang Tiande. Research and application of heat treatment technology for aerospace materials and components[J]. Heat Treatment of Metals, 2018, 43(1): 1-5. [5]李红英, 程勇胜, 郑子樵. 时效制度对7475铝合金挤压件组织与性能的影响[J]. 中南工业大学学报, 2001, 32(4): 394-397. Li Hongying, Cheng Yongsheng, Zheng Ziqiao. Effects of aging on microstructure and properties of 7475 alloy extrusions[J]. Journal of Central South University of Technology, 2001, 32(4): 394-397. [6]Fridlyander I N. Laws of variation of properties of aluminum alloys during aging[J]. Metal Science and Heat Treatment, 2003, 45(9/10): 337-340. [7]刘胜胆, 张新明, 黄振宝. 淬火速率对7055铝合金组织和力学性能的影响[J]. 材料科学与工艺, 2008, 16(5): 650-653. Liu Shengdan, Zhang Xinming, Huang Zhenbao. Effects of quenching rates on microstructure and mechanical properties of 7055 aluminum alloy[J]. Materials Science and Technology, 2008, 16(5): 650-653. [8]Thompson D S, Subramanya B S, Levy S A. Quench rate effects in Al-Zn-Mg-Cu alloys[J]. Metallurgical Transactions, 1971, 2(4): 1149-1160. [9]Deschamps A, Bréchet Y. Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy[J]. Materials Science and Engineering A, 1998, 251(1/2): 200-207. [10]Deschamps A, Brechet Y. Nature and distribution of quench-induced precipitation in an Al-Zn-Mg-Cu alloy[J]. Scripta Materialia, 1998, 39(11): 1517-1522. [11]Dumont D, Deschamps A, Bréchet Y, et al. Characterisation of precipitation microstructures in aluminium alloys 7040 and 7050 and their relationship to mechanical behaviour[J]. Materials Science and Technology, 2004, 20(5): 567-576. [12]Bryant A T. The effect of composition upon the quench-sensitivity of some Al-Zn-Mg alloy[J]. Journal of the Institute of Metals, 1966, 94: 94-99. [13]Engler O, Sachot E, Ehrström J C, et al. Recrystallisation and texture in hot deformed aluminium alloy 7010 thick plates[J]. Materials Science and Technology, 1996, 12(9): 717-729. [14]刘轩之, 翁泽钜, 王凯凯, 等. 深冷处理对7050 铝合金尺寸稳定性及断裂韧性的影响[J]. 金属热处理, 2019, 44(9): 103-107. Liu Xuanzi, Wen Zeju, Wang Kaikai. et al. Effect at cryogenic treatment on dimensional stability and fracture toughness of 7050 aluminum alloy[J]. Heat Treatment of Metals, 2019, 44(9): 103-107. [15]刘轩之, 顾开选, 翁泽钜, 等. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 178-183. Liu Xuanzi, Gu Kaixuan, Wen Zeju, et al. A review on deep cryogenic treatment of aluminium alloy[J]. Materials Reports, 2020, 34(3): 178-183. [16]钱士强, 李曼萍. 深冷处理对Al-Cu合金时效的影响[J]. 金属热处理, 2001, 26(12): 28-31. Qian Shiqiang, Li Manping. Influence of cryogenic treatment on ageing process for supersaturated aluminum-copper alloy[J]. Heat Treatment of Metals, 2001, 26(12): 28-31. [17]王 磊. 基于深冷处理的金属材料残余应力消除试验研究[J]. 新技术新工艺, 2020(1): 40-44. Wang Lei. Research on experiment of residual stress elimination of metal materials based on cryogenic treatment[J]. New Technology and New Process, 2020(1): 40-44. [18]Yang J, Ou B. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7050 Al-alloy[J]. Scandinavian Journal of Metallurgy, 2001, 30: 158-167. [19]华明建, 李春志, 王鸿渐. 微观组织对7075铝合金的屈服强度和抗应力腐蚀性能的影响[J]. 金属学报, 1988, 24(1): 41-46. Hua Mingjian, Li Chunzhi, Wang Hongjian. Effect of microstructures on the yield strength and SCR of 7075 aluminium alloy[J]. Acta Metallurgica Sinica, 1988, 24(1): 41-46. [20]Scamans G M, Alani R, Swann P R. Pre-exposure embrittlement and stress corrosion failure in Al-Zn-Mg alloys[J]. Corrosion Science, 1976, 16(7): 443-459. [21]Wloka J, Hack T, Virtanen S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2007, 49(3): 1437-1449. [22]Synecˇek V, Simmerska M, Bartuška P, et al. Structure of the grain boundary region in an Al-15at.%Zn and Al-2.0at.%Zn-1.3at.%Mg alloy aged at elevated temperatures[J]. Crystal Research and Technology, 1983, 18(10): 1261-1276. |