[1]李少华, 刘 利, 彭红文. 超(超)临界发电技术在中国的发展现状[J]. 煤炭加工与综合利用, 2020(2): 65-70. Li Shaohua, Liu Li, Peng Hongwen. The present situation of the development of ultra-supercritical power generation technology in China[J]. Coal Processing and Comprehensive Utilization, 2020(2): 65-70. [2]谢 龙. 我国火力发电能耗状况研究及展望[J]. 通信电源技术, 2016, 33(1): 165-166. Xie Long. Research and prospects of energy consumption of thermal power generation in China[J]. Telecom Power Technologies, 2016, 33(1): 165-166. [3]江哲生, 董卫国, 毛国光. 国产1000 MW 超(超)临界机组技术综述[J]. 电力建设, 2007, 28(8): 6-13. Jiang Zhesheng, Dong Weiguo, Mao Guoguang. Summary of domestic 1000 MW ultra supercritical unit technologies[J]. Electric Power Construction, 2007, 28(8): 6-13. [4]蒙新明, 张 路, 赖云亭, 等. 某超临界机组锅炉过热器管爆管原因分析[J]. 理化检验: 物理分册, 2015, 51(5): 353-357. Meng Xinming, Zhang Lu, Lai Yunting, et al. Analysis on bursting reason of super-heater tubes of a supercritical boiler[J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2015, 51(5): 353-357. [5]赵彦芬, 张 路, 刘 艳, 等. 超超临界机组T92钢高温受热面管爆管原因分析[J]. 理化检验(物理分册), 2012, 48(3): 180-184. Zhao Yanfen, Zhang Lu, Liu Yan, et al. Reason analysis on bursting tube of high temperature boiler tube of T92 steel in ultra supercritical unit[J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2012, 48(3): 180-184. [6]Laha K, Kyono J, Shinya N. Enhanced long term creep strength of SUS347 stainless steel through the self-healing effect of creep cavity[J]. Transactions of the Materials Research Society of Japan, 2003, 28(3): 687. [7]姚经松. 生产工艺对TP347HFG钢无缝管耐蚀性影响研究[D]. 常州: 常州大学, 2021. Yao Jingsong. Effect of production process on corrosion resistance of TP347HFG steel seamless tube[D]. Changzhou: Changzhou University, 2021. [8]Peng Z, Dang Y, Peng F. Effect of carbon and niobium contents on phase parameters and creep rupture time at 650 ℃ for TP347HFG steel[J]. Acta Metallurgica Sinica, 2012, 48(4): 450-454. [9]Golański G, Zieliński A, Sroka M. Microstructure and mechanical properties of TP347HFG austenitic stainless steel after long-term service[J]. International Journal of Pressure Vessels and Piping, 2020, 188: 104160. [10]Dudziak T, Ŀukaszewicz M, Simms N, et al. Steam oxidation of TP347HFG, Super 304H and HR3C-analysis of significance of steam flowrate and specimen surface finish[J]. Corrosion Engineering, Science and Technology, 2015, 50(4): 272-282. [11]宫俊峰. 超临界锅炉用TP347HFG钢的材质特性及焊接工艺分析[J]. 焊接技术, 2020, 49(7): 44-47. Gong Junfeng. Properties and welding process of TP347HFG steel for supercritical boiler[J]. Welding Technology, 2020, 49(7): 44-47. [12]Fu S L, Shi C C, Xi S X. Ultra-supercritical power plant development and high temperature materials applications in China[J]. Energy Materials, 2008, 3(4): 201-207. [13]刘天佐, 魏玉忠, 马芹征, 等. Super304H钢650 ℃时效过程中析出相演化的定量分析[J]. 金属热处理, 2019, 44(12): 232-237. Liu Tianzuo, Wei Yuzhong, Ma Qinzheng, et al. Quantitative analysis on evolution of precipitates in Super304H steel during aging at 650 ℃[J]. Heat Treatment of Metals, 2019, 44(12): 232-237. [14]Golański G, Lis A K, Słania J, et al. Microstructural aspect of long-term service of the austenitic TP347HFG steel[J]. Archives of Metallurgy and Materials, 2015, 60(4): 2901-2904. [15]Zhang Y, Yuan T, Shao Y, et al. Investigation of the microstructure evolution in TP347HFG austenitic steel at 700 ℃ and its characterization method[J]. High Temperature Materials and Processes, 2021, 40(1): 12-22. [16]李文华, 柯安鹏. 700 MW亚临界锅炉三级过热器TP347HFG钢失效分析[J]. 失效分析与预防, 2019, 14(6): 415-419. Li Wenhua, Ke Anpeng. Failure analysis of superheater tube steel TP347HFG for a 700 MW subcritical boiler[J]. Failure Analysis and Prevention, 2019, 14(6): 415-419. [17]Iseda A, Okada H, Semba H, et al. Long-term creep properties and microstructure of Super304H, TP347HFG and HR3C for A-USC boilers[J]. Energy Materials, 2007, 2(4): 199-206. [18]Wu Y, Liu R, Zhan X Q, et al. Abnormal grain growth and its effect on mechanical properties of the Super304H heat-resistant steel[J]. Journal of Materials Engineering and Performance, 2023, 32: 2228-2236. [19]Rudnizki J, Zeislmair B, Prahl U, et al. Prediction of abnormal grain growth during high temperature treatment[J]. Computational Materials Science, 2010, 49: 209-216. [20]Padilha A F, Plaut R L, Rios P R. Annealing of cold-worked austenitic stainless steels[J]. ISIJ international, 2003, 43(2): 135-143. [21]周颖惠. TP347H奥氏体耐热钢的时效析出行为及热变形工艺[D]. 天津: 天津大学, 2016. Zhou Yinghui. Precipitation behaviors and hot deformation processes of TP347H austenitic heat-resistant steel[D]. Tianjin: Tianjin University, 2016. [22]Pilloni G, Quadrini E, Spigarelli S. Interpretation of the role of forest dislocations and precipitates in high-temperature creep in a Nb-stabilized austenitic stainless steel[J]. Materials Science and Engineering A, 2000, 279: 52-60. [23]Zhang S, Jiang Z, Li H, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging[J]. Materials Characterization, 2018, 137: 244-255. [24]Erneman J, Schwind M, Liu P, et al. Precipitation reactions caused by nitrogen uptake during service at high temperatures of a niobium stabilised austenitic stainless steel[J]. Acta Materialia, 2004, 52(14): 4337-4350. [25]程 翔, 鲍 峥, 王若民, 等. 服役态不同晶粒度TP347HFG钢管显微组织与力学性能的对比研究[J]. 材料热处理学报, 2024, 45(1): 148-156. Cheng Xiang, Bao Zheng, Wang Ruomin, et al. Comparative study on microstructures and mechanical properties of the in-service TP347HFG steel tubes of different grain sizes[J]. Transactions of Materials and Heat Treatment, 2024, 45(1): 148-156. [26]潘家栋, 王家庆, 陈国宏, 等. Super304H耐热钢的热稳定性[J]. 中国科技论文, 2012, 7(2): 95-100. Pan Jiadong, Wang Jiaqing, Chen Guohong, et al. Thermal stability of Super304H heat-resistant steel[J]. China Science Paper, 2012, 7(2): 95-100. [27]Ma L, Han J, Shen J, et al. Effects of microalloying and heat-treatment temperature on the toughness of 26Cr-3.5Mo super ferritic stainless steels[J]. Acta Metallurgica Sinica, 2014, 27: 407-415. [28]刘 润. 奥氏体晶粒异常长大及其对Super304H钢管力学性能的影响[D]. 合肥: 合肥工业大学, 2022. Liu Run. Abnormal grain growth of austenite grains and its effects on mechanical properties of the Super304H steel tube[D]. Hefei: Hefei University of Technology, 2022. |