[1]陈 玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报, 2020, 40(3): 63-76. Chen Wei, Liu Yunxi, Li Zhiqiang. Research status and development trend of high-strength β-titanium alloy[J]. Journal of Aerospace Materials, 2020, 40(3): 63-76. [2]朱鸿昌, 罗军明, 朱知寿. TB17钛合金高温压缩变形行为[J]. 航空材料学报, 2019, 39(3): 44-52. Zhu Hongchang, Luo Junming, Zhu Zhishou. High temperature compression deformation behavior of TB17 titanium alloy[J]. Journal of Aerospace Materials, 2019, 39(3): 44-52. [3]程 军, 牛金龙, 余 森, 等. 固溶处理对一种新型亚稳定β型钛合金组织与力学性能的影响[J]. 热加工工艺, 2017, 46(14): 237-241. Cheng Jun, Niu Jinlong, Yu Sen, et al. Effect of solid solution treatment on microstructure and mechanical properties of a new type of metastable β type titanium alloy[J]. Hot Working Technology, 2017, 46(14): 237-241. [4]张 颖, 李明祥, 胡生双, 等. 激光成形工艺对TB18钛合金微观组织的影响[J]. 特种铸造及有色合金, 2022, 42(4): 436-440. Zhang Yi, Li Mingxiang, Hu Shengshuang, et al. Effect of laser forming process on microstructure of TB18 titanium alloy[J]. Special Casting and Nonferrous Alloys, 2022, 42(4): 436-440. [5]江一帆, 田 辉, 马梁栋, 等. 新型超高强度钛合金大进给铣削刀具磨损机理研究[J]. 航空制造技术, 2021, 64(19): 90-96. Jiang Yifan, Tian Hui, Ma Liangdong, et al. Investigation of tool wear in high feed milling novel ultra-high strength titanium alloy[J]. Aerospace Manufacturing Technology, 2021, 64(19): 90-96. [6]Zhou Wei, Liu Xianghong, Feng Jun, et al. Grain growth kinetics of TB18 titanium alloy[J]. Rare Metal Materials and Engineering, 2022, 51(9): 3129-3132. [7]石李祯, 傅 莉, 林建国, 等. 高压时效β钛合金的微观组织演化及动力学分析[J]. 稀有金属材料与工程, 2022, 51(6): 2090-2096. Shi Lizhen, Fu Li, Lin Jianguo, et al. Microstructure evolution and dynamic analysis of β titanium alloy during high pressure aging[J]. Rare Metal Materials and Engineering, 2022, 51(6): 2090-2096. [8]盖晋阳, 程 军, 于振涛, 等. β型钛合金细化α析出相的方法及研究现状[J]. 热加工工艺, 2020, 49(14): 1-5. Gai Jinyang, Cheng Jun, Yu Zhentao, et al. Methods and research status of refinement of α precipitates in β-type titanium alloys[J]. Hot Working Technology, 2020, 49(14): 1-5. [9]王鹏宇, 张浩宇, 张志鹏, 等. 固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响[J]. 材料研究学报, 2020, 34(6): 473-480. Wang Pengyu, Zhang Haoyu, Zhang Zhipeng, et al. Effect of solution temperature on microstructure and tensile properties of a metastable β-Ti alloy Ti-4Mo-6Cr-3Al-2Sn[J]. Chinese Journal of Materials Research, 2020, 34(6): 473-480. [10]刘 港, 刘 静, 杨 峰, 等. 钛合金化学热处理研究进展[J]. 金属热处理, 2022, 47(8): 249-256. Liu Gang, Liu Jing, Yang Feng, et al. Research progress of chemical heat treatment of titanium alloys[J]. Heat Treatment of Metals, 2022, 47(8): 249-256. [11]李 健, 庄宇盛, 李春慧, 等. 冷变形及时效对新型β钛合金组织性能的影响[J]. 金属热处理, 2022, 47(11): 70-76. Li Jian, Zhuang Yusheng, Li Chunhui, et al. Effects of cold rolling and aging on microstructure and properties of novel β-titanium alloys[J]. Heat Treatment of Metals, 2022, 47(11): 70-76. [12]尤中源, 刘文言, 陈 荣, 等. α相含量对新型亚稳β钛合金动态力学性能的影响[J]. 稀有金属, 2021, 45(7): 891-896. You Zhongyuan, Liu Wenyan, Chen Rong, et al. Dynamic mechanical properties of new type of metastable titanium alloy with different α phase content[J]. Chinese Journal of Rare Metals, 2021, 45(7): 891-896. [13]Srinivasu G, Natraj Y, Bhattacharjee A, et al. Tensile and fracture toughness of high strength β Titanium alloy, Ti-10V-2Fe-3Al, as a function of rolling and solution treatment temperatures[J]. Materials and Design, 2013, 47: 323-330. [14]Jones N. G, Dashwood R. J, Jackson M, et al. β phase decomposition in Ti-5Al-5Mo-5V-3Cr[J]. Acta Materialia, 2009, 57: 3830-3839. [15]张瑞雪, 马英杰, 贾焱迪, 等. 亚稳β钛合金热处理显微组织演变和元素再分配行为[J]. 材料研究学报, 2023, 37(3): 161-167. Zhang Ruixue, Ma Yingjie, Jia Yandi, et al. Microstructure evolution and element partitioning behavior during heat-treatment in metastable β titanium alloy[J]. Chinese Journal of Materials Research, 2023, 37(3): 161-167. [16]Li T, Kent D, Sha G, et al. New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys[J]. Acta Materialia, 2016, 106: 353-366. [17]Zhao Q, Sun Q, Xin S, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process[J]. Materials Science and Engineering A, 2022, 845: 143260. [18]Zhang B, Chong Y, Zheng R, et al. Enhanced mechanical properties in β-Ti alloy aged from recrystallized ultrafine β grains[J]. Materials and Design, 2020, 195: 109017. [19]Song B, Chen Y, Xiao W, et al. Formation of intermediate phases and their influences on the microstructure of high strength near-β titanium alloy[J]. Materials Science and Engineering A, 2020, 793: 139886. |