[1]Fan E, Li Y, You Y, et al. Effect of crystallographic orientation on crack growth behavior of HSLA steel[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(8): 1532-1542. [2]Chattoraj I, Kumar A, Das S, et al. Factors influencing the extent of hydrogen-enhanced brittle cracking in a Cu-strengthened HSLA steel during monotonic loading[J]. International Journal of Materials Research, 2022, 94(11): 1228-1233. [3]王少阳, 于 浩. 铁素体含量与回火温度对HSLA钢组织性能的影响[J]. 材料热处理学报, 2019, 40(3): 125-132. Wang Shaoyang, Yu Hao. Influence of ferrite content and tempering temperature on microstructure and properties of HSLA steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(3): 125-132. [4]陈 刚, 罗小兵, 柴 锋, 等. 两次淬火对HSLA钢组织和冲击韧性的影响[J]. 材料研究学报, 2020, 34(9): 705-711. Chen Gang, Luo Xiaobing, Chai Feng, et al. Effect of double quenching on microstructure and impact toughness of a high strength low alloy steel[J]. Chinese Journal of Materials Research, 2020, 34(9): 705-711. [5]高 野, 任家宽, 李志峰, 等. 奥氏体化温度对900 MPa级HSLA钢显微组织和晶体学演变的影响[J]. 材料研究学报, 2022, 36(1): 21-28. Gao Ye, Ren Jiakuan, Li Zhifeng, et al. Effect of austenitizing temperature on microstructure and crystallographic evolution of 900 MPa grade HSLA steel[J]. Chinese Journal of Materials Research, 2022, 36(1): 21-28. [6]Zhao H, Wynne B P, Palmiere E J. Conditions for the occurrence of acicular ferrite transformation in HSLA steels[J]. Journal of Materials Science, 2018, 53(5): 3785-3804. [7]Basiruddin S M, Ghosh A, Rarhi N, et al. Effect of reheating temperature and cooling treatment on the microstructure, texture, and impact transition behavior of heat-treated naval grade HSLA steel[J]. Metallurgical and Materials Transactions, 2017, 48(7): 3231-3247. [8]罗小兵, 杨才福, 苏 航, 等. 时效温度对HSLA高强船体钢组织和性能的影响[J]. 材料热处理学报, 2011, 32(6): 73-77. Luo Xiaobing, Yang Caifu, Su Hang, et al. Effect of aging temperature on microstructure and properties of HSLA ship-hull steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(6): 73-77. [9]卢春宁, 叶 姜, 樊 雷. 回火温度对含铜HSLA钢组织及力学性能的影响[J]. 热加工工艺, 2020, 49(24): 150-153. Lu Chunning, Ye Jiang, Fan Lei. Effects of tempering temperature on microstructure and mechanical properties of copper-containing HSLA steel[J]. Hot Working Technology, 2020, 49(24): 150-153. [10]孙铭璇, 孟 利, 张 宁, 等. 感应淬火条件下Cu-Ni低碳低合金钢的强化机制[J]. 金属热处理, 2023, 48(4): 204-210. Sun Mingxuan, Meng Li, Zhang Ning, et al. Strengthening mechanism of Cu-Ni-bearing low-carbon low-alloyed steel under induction quenching treatment[J]. Heat Treatment of Metals, 2023, 48(4): 204-210. [11]杨 鹏, 张朋彦, 纪久张. 两相区淬火+回火对600 MPa级低合金高强钢组织与性能的影响[J]. 金属热处理, 2021, 46(6): 59-64. Yang Peng, Zhang Pengyan, Ji Jiuzhang. Effect of intercritical quenching and tempering on microstructure and mechanical properties of 600 MPa HSLA steel[J]. Heat Treatment of Metals, 2021, 46(6): 59-64. [12]Fang Q, Zhao L, Chen C X, et al. 800 MPa class HSLA steel block part fabricated by WAAM for building applications: Tensile properties at ambient and elevated (600 ℃) temperature[J]. Advances in Materials Science and Engineering, 2022, 38(2): 146-151. |