[1]刘 威, 李 涛, 郑津洋, 等. 超高压容器规范标准最新进展[J]. 压力容器, 2014, 31(12): 47-54. Liu Wei, Li Tao, Zheng Jinyang, et al. Recent development of super-high pressure vessel codes and standards[J]. Pressure Vessel Technology, 2014, 31(12): 47-54. [2]郑津洋, 马 凯, 叶 盛, 等. 我国氢能高压储运设备发展现状及挑战[J]. 压力容器, 2022, 39(3): 1-8. Zheng Jinyang, Ma Kai, Ye Sheng, et al. Development status and challenges of equipment for storage and transportation of high-pressure gaseous hydrogen in China[J]. Pressure Vessel Technology, 2022, 39(3): 1-8. [3]王 卫. 高强高韧均质化Cr-Ni-Mo-V系钢的研究[D]. 秦皇岛: 燕山大学, 2016. [4]王 琪. 超高压容器用钢及其生产工艺[J]. 压力容器, 1994, 11(5): 28-36. Wang Qi. Steels used for extra high pressure vessel and their technology[J]. Pressure Vessel Technology, 1994, 11(5): 28-36. [5]富 威, 吴 琼, 崔运山, 等. 舰炮身管的抗振性能优化研究[J]. 兵工学报, 2019, 40(2): 234-242. Fu Wei, Wu Qiong, Cui Yunshan, et al. Optimization of anti-vibration performance of naval gun barrel[J]. Acta Armamentarii, 2019, 40(2): 234-242. [6]朱大伟. 炮身参数化设计与分析[D]. 南京: 南京理工大学, 2013. [7]贺元庚, 刘雨健, 夏云志, 等. 冷轧对M50钢马氏体/贝氏体复相组织与力学性能的影响[J]. 金属热处理, 2020, 45(11): 126-131. He Yuangeng, Liu Yujian, Xia Yunzhi, et al. Effect of cold rolling on M/B duplex microstructure and mechanical properties of M50 steel[J]. Heat Treatment of Metals, 2020, 45(11): 126-131. [8]闫洪涛, 王永金, 齐海龙, 等. 淬火温度对空冷贝氏体-马氏体复相耐磨钢组织性能的影响[J]. 金属热处理, 2023, 48(3): 129-134. Yan Hongtao, Wang Yongjin, Qi Hailong, et al. Effect of quenching temperature on microstructure and properties of air-cooled bainite-martensite multiphase wear-resistant steel[J]. Heat Treatment of Metals, 2023, 48(3): 129-134. [9]Xie Z J, Ma X P, Shang C J, et al. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel[J]. Materials Science and Engineering A, 2015, 641: 37-44. [10]Kang J, Zhang F C, Yang X W, et al. Effect of tempering on the microstructure and mechanical properties of a medium carbon bainitic steel[J]. Materials Science and Engineering A, 2017, 686: 150-159. [11]Tomita Y, Okabayashi K. Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite[J]. Metallurgical Transactions A, 1985, 16(1): 73-82. [12]Young C H, Bhadeshia H. Strength of mixtures of bainite and martensite[J]. Materials Science and Technology, 1994, 10(3): 209-214. [13]Wang F, Qian D, Mao H, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with bainite/martensite duplex structure[J]. Journal of Materials Research and Technology, 2020, 9(3): 6712-6722. [14]Lee S, Kim S, Hwang B, et al. Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel[J]. Acta Materialia, 2002, 50(19): 4755-4762. [15]刘宗昌, 计云萍. 贝氏体组织的回火转变[J]. 热处理技术与装备, 2019, 40(1): 1-8. Liu Zongchang, Ji Yunping. Tempering transformation of bainite[J]. Heat Treatment Technology and Equipment, 2019, 40(1): 1-8. [16]Lee S I, Lee J M, Kim S G, et al. Influence of austempering temperature on microstructure and mechanical properties of high-carbon nanostructured bainitic steels[J]. Materials Science and Engineering A, 2022, 848: 143334. [17]Young C H, Bhadeshia H K D H. Strength of mixtures of bainite and martensite[J]. Materials Science and Technology, 1994, 10(3): 209-214. [18]Liao J, Ikeuchi K, Matsuda F. Toughness investigation on simulated weld HAZs of SQV-2A pressure vessel steel[J]. Nuclear Engineering and Design, 1998, 183(1): 9-20. [19]Chen J H, Kikuta Y, Araki T, et al. Micro-fracture behaviour induced by M-A constituent (island martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel[J]. Acta Metallurgica, 1984, 32(10): 1779-1788. [20]Luo X, Chen X, Wang T, et al. Effect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel[J]. Materials Science and Engineering A, 2018, 710: 192-199. |