[1]龚玉玲, 徐晓栋. 激光熔覆工艺参数对熔覆层质量影响研究[J]. 机床与液压, 2022, 50(2): 76-81. Gong Yuling, Xu Xiaodong. Study on the influence of laser cladding process parameters on cladding quality[J]. Machine Tool and Hydraulics, 2022, 50(2): 76-81. [2]衡 钊, 舒林森. 激光功率对27SiMn钢激光熔覆力学性能的影响[J]. 中国激光, 2022, 49(8): 112-120. Heng Zhao, Shu Linsen. Effect of laser power on mechanical properties of laser cladded 27SiMn steel[J]. Chinese Journal of Laser, 2022, 49(8): 112-120. [3]贺 星, 孔德军, 宋仁国. 扫描速度对激光熔覆Al-Ni-TiC-CeO2复合涂层组织与性能的影响[J]. 表面技术, 2019, 48(3): 155-162. He Xing, Kong Dejun, Song Renguo. Effect of scanning speed on microstructures and properties of laser cladding Al-Ni-TiC-CeO2 composite coatings[J]. Surface Technology, 2019, 48(3): 155-162. [4]施晓帅, 姜芙林, 王玉玲, 等. 基于响应面法的激光熔覆3540Fe涂层形貌及质量预测研究[J]. 表面技术, 2022, 51(12): 392-405. Shi Xiaoshuai, Jiang Fulin, Wang Yuling, et al. Morphology and quality prediction of laser cladding 3540Fe coating based on response surface method[J]. Surface Technology, 2022, 51(12): 392-405. [5]练国富, 曹 强, 郑 颖, 等. 激光熔覆多道搭接成形及粉末利用率[J]. 材料热处理学报, 2023, 44(2): 127-139. Lian Guofu, Cao Qiang, Zheng Ying, et al. Multi-channel lap forming and powder utilization ratio of laser cladding[J]. Transactions of Materials and Heat Treatment, 2023, 44(2): 127-139. [6]安相龙, 王玉玲, 姜芙林, 等. 搭接率对42CrMo激光熔覆层温度场和残余应力分布的影响[J]. 中国激光, 2021, 48(10): 89-100. An Xianglong, Wang Yuling, Jiang Fulin, et al. Influence of lap ratio on temperature field and residual stress distribution of 42CrMo laser cladding[J]. Chinese Journal of Laser, 2021, 48(10): 89-100. [7]龚玉玲, 武美萍, 崔 宸, 等. 搭接率对TC4表面Ni60A熔覆层组织性能的影响[J]. 金属热处理, 2021, 46(9): 229-233. Gong Yuling, Wu Meiping, Cui Chen, et al. Effect of overlap rate on microstructure and properties of Ni60A clad coating on TC4 titanium alloy[J]. Heat Treatment of Metals, 2021, 46(9): 229-233. [8]曹 铭, 李 涛, 石博文, 等. 倾斜基体上激光熔覆临界搭接率及平整度研究[J]. 应用激光, 2023, 43(3): 26-32. Cao Ming, Li Tao, Shi Bowen, et al. Research of critical overlap rate and flatness of laser cladding on inclined substrates[J]. Applied Laser, 2023, 43(3): 26-32. [9]时 阳, 陈智君, 张群莉, 等. 镍基高温合金表面激光熔覆Inconel 738合金层的开裂行为[J]. 金属热处理, 2011, 36(3): 72-76. Shi Yang, Chen Zhijun, Zhang Qunli, et al. Cracking behavior of Inconel 738 alloy on Ni-base superalloy surface by laser cladding[J]. Heat Treatment of Metals, 2011, 36(3): 72-76. [10]郭 卫, 张亚普, 胡 磊, 等. 激光熔覆304不锈钢组织与力学性能研究[J]. 应用激光, 2019, 39(2): 191-197. Guo Wei, Zhang Yapu, Hu Lei, et al. Microstructure and mechanical properties of laser cladding 304 stainless steel[J]. Applied Laser, 2019, 39(2): 191-197. [11]张 俊, 宋建丽, 李永堂. 送粉多道搭接激光熔覆温度场的数值模拟[J]. 金属热处理, 2012, 37(10): 87-91. Zhang Jun, Song Jianli, Li Yongtang. Numerical simulation of temperature field in multi-track overlapping powder-feeding laser cladding[J]. Heat Treatment of Metals, 2012, 37(10): 87-91. [12]李二盼, 梁国星, 刘东刚, 等. 42CrMo钢表面激光熔覆颗粒增强Co基涂层的组织与性能[J]. 金属热处理, 2023, 48(3): 159-165. Li Erpan, Liang Guoxing, Liu Donggang, et al. Microstructure and properties of particles reinforced Co-based coating by laser cladding on 42CrMo steel[J]. Heat Treatment of Metals, 2023, 48(3): 159-165. [13]张栋栋, 石 岩, 刘 佳, 等. 激光熔覆高硬涂层裂纹控制研究[J]. 应用激光, 2014, 34(1): 1-8. Zhang Dongdong, Shi Yan, Liu Jia, et al. Research on controlling the crack in laser cladding of high hardness coating[J]. Applied Laser, 2014, 34(1): 1-8. [14]杨栋杰, 白峭峰, 欧阳昌耀, 等. 热处理对激光熔覆钴基合金涂层硬度与耐磨性的影响[J]. 金属热处理, 2023, 48(7): 271-276. Yang Dongjie, Bai Qiaofeng, Ouyang Changyao, et al. Effect of heat treatment on hardness and wear resistance of laser clad Co-based alloy coating[J]. Heat Treatment of Metals, 2023, 48(7): 271-276. [15]李占锋, 张恕爱, 管西巧, 等. 预热温度对激光熔覆镍基碳化钨涂层裂纹的影响机理[J]. 金属热处理, 2024, 49(5): 252-259. Li Zhanfeng, Zhang Shu’ai, Guan Xiqiao, et al. Effect mechanism of preheating temperature on crack of laser clad nickel-based tungsten carbide coating[J]. Heat Treatment of Metals, 2024, 49(5): 252-259. [16]翁益青, 薛瑞雷, 满 蛟, 等. 热处理对高速激光熔覆不锈钢熔覆层组织性能的影响[J]. 金属热处理, 2023, 48(2): 276-283. Weng Yiqing, Xue Ruilei, Man Jiao, et al. Effect of heat treatment on microstructure and properties of stainless steel coating by high-speed laser cladding[J]. Heat Treatment of Metals, 2023, 48(2): 276-283. [17]李云峰, 王嘉圣, 石 岩, 等. 载气流量对激光熔覆添加Y2O3的镍基涂层组织和耐腐蚀性的影响[J]. 金属热处理, 2021, 49(2): 281-290. Li Yunfeng, Wang Jiasheng, Shi Yan, et al. Influence of Y2O3 on microstructure and corrosion resistance of Ni-based coating fabricated by laser cladding with different flow rates of carrier gas[J]. Heat Treatment of Metals, 2021, 49(2): 281-290. [18]Zhang B, Coddet C. Numerical study on the effect of pressure and nozzle dimension on particle distribution and velocity in laser cladding under vacuum base on CFD[J]. Journal of Manufacturing Processes, 2016, 23: 54-60. [19]Tan H, Zhang F, Wen R, et al. Experiment study of powder flow feed behavior of laser solid forming[J]. Optics and Lasers in Engineering, 2012, 50(3): 391-398. [20]周建忠, 刘会霞, 张永康, 等. 激光快速制造技术及应用[M]. 北京: 化学工业出版社, 2009. |