[1]封 辉, 池 强, 吉玲康, 等. 管线钢氢脆研究现状及进展[J]. 腐蚀科学与防护技术, 2017, 29(3): 318-322. Feng Hui, Chi Qiang, Ji Lingkang, et al. Research and development of hydrogen embrittlement of pipeline steel[J]. Corrosion Science and Protection Technology, 2017, 29(3): 318-322. [2]郝红梅, 陈 健, 汪 兵, 等. X80级管线钢的抗氢致裂纹性能[J]. 金属热处理, 2016, 41(4): 63-70. Hao Hongmei, Chen Jian, Wang Bing, et al. Hydrogen induced crack-resistance of X80 pipeline steel[J]. Heat Treatment of Metals, 2016, 41(4): 63-70. [3]徐 峰, 李利巍, 徐进桥, 等. 高级别耐酸管线钢的开发现状及发展趋势[J]. 钢铁研究, 2014, 42(4): 58-61. Xu Feng, Li Liwei, Xu Jinqiao, et al. Current status and development trend of high grade acid resistant pipeline steel[J]. Research on Iron and Steel, 2014, 42(4): 58-61. [4]史显波, 王 威, 严 伟, 等. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136. Shi Xianbo, Wang Wei, Yang Wei, et al. Effect of martensite/austenite(M/A) constituent on H2S resistance of high strength pipeline steels[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35(2): 129-136. [5]陈 健, 汪 兵, 胡 亮, 等. 高强度管线钢微观组织对氢致裂纹的影响[J]. 钢铁, 2015, 50(4): 48-52. Chen Jian, Wang Bing, Hu Liang, et al. Effects of hydrogen induced cracking on the microstructure of high strength pipeline steel[J]. Iron and Steel, 2015, 50(4): 48-52. [6]Koh S U, Jung H G, Kang K B, et al. Effect of microstructure on hydrogen-induced cracking of linepipe steels[J]. Corrosion, 2008, 64(7): 574. [7] Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of line pipes steel[J]. Corrosion Science, 2008, 50: 1856. [8]杨 静, 徐 烽, 黄国建, 等. 影响X65管线钢抗氢致开裂性能的因素[J]. 机械工程材料, 2011, 35(11): 94-97. Yang Jing, Xu Feng, Huang Guojian, et al. Influential factors of resistance to HIC of X65 pipeline steels[J]. Materials for Mechanical Engineering, 2011, 35(11): 94-97. [9]彭先华, 刘 静, 黄 峰, 等. 微观组织对管线钢氢致裂纹扩展方式及氢捕获效率的影响[J]. 腐蚀与防护, 2013, 34(10): 882-885. Peng Xianhua, Liu Jing, Huang Feng, et al. Effect of microstructure of hydrogen-induced cracking propagation and hydrogen trapping efficiency of pipeline steel[J]. Corrosion and Protection, 2013, 34(10): 882-885. [10]Beidokhti B, Dolati A, Koukabi H A. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking [J]. Materials Science and Engineering A, 2009, 507(1/2): 167-173. [11]李平全, 霍春勇, 李金风, 等. 两种组织类型的X70钢级管线钢的带状组织浅析(上)[J]. 钢管, 2006, 35(2): 15-20. Li Pingquan, Huo Chunyong, Li Jinfeng, et al. Banded microstructure analysis of X70 grade steel with dual structures for line pipe(Part I)[J]. Steel Pipe, 2006, 35(2): 15-20. [12]Arafin M A, Szpunar J A. A new understanding of intergranular stress corrosion racking resistance of pipeline steel through grain boundary character and crystallogarphic texture studies[J]. Corrosion Science, 2009, 51: 119-126. [13]杨海峰, 曲之国, 李 伟, 等. 轧制及热处理工艺对API 5L Gr.B管线钢抗HIC性能的影响[J]. 连铸, 2018, 43(6): 18-21. Yang Haifeng, Qu Zhiguo, Li Wei, et al. Effect of rolling and heat treatment on HIC resistance performance of API 5L Gr.B pipeline steel[J]. Continuous Casting, 2018, 43(6): 18-21. |