[1]Wang M, Huang M X. Abnormal TRIP effect on the work hardening behavior of a quenching and partitioning steel at high strain rate[J]. Acta Materialia, 2020, 188: 551-559. [2]王筱冬. 高强度弹簧钢的发展现状和趋势分析[J]. 中国锰业, 2017, 35(4): 104-106. Wang Xiaodong. Development status and trend analysis of high strength spring steel[J]. China Manganese Industry, 2017, 35(4): 104-106. [3]李 军, 刘 鑫, 曹广祥, 等. 汽车车身高强度钢的应用发展及挑战[J]. 汽车工艺与材料, 2021(8): 1-6. Li Jun, Liu Xin, Cao Guangxiang, et al. Application development and challenge on high strength steel for automobile body[J]. Automobile Technology and Material, 2021(8): 1-6. [4]张 凯, 陈银莉, 孙彦辉, 等. 加热过程中H2O(g)对55SiCr弹簧钢脱碳的影响[J]. 金属学报, 2018, 54(10): 1350-1358. Zhang Kai, Chen Yinli, Sun Yanhui, et al. Effect of H2O(g) on decarburization of 55SiCr spring steel during the heating process[J]. Acta Metallurgica Sinica, 2018, 54(10): 1350-1358. [5]马 钰, 唐海燕, 刘颜彬, 等. 稀土铈对55SiCr高应力弹簧钢夹杂物的改性作用[J]. 钢铁, 2022, 57(6): 57-71. Ma Yu, Tang Haiyan, Liu Yanbin, et al. Modification of non-metallic inclusions in 55SiCr high stress spring steel by rare earth Ce[J]. Iron and Steel, 2022, 57(6): 57-71. [6]邹江河, 姜 云. 超高强度弹簧钢冷变形性能及其仿真模拟[J]. 钢铁研究学报, 2020, 32(12): 1157-1164. Zou Jianghe, Jiang Yun, Cold deformation performance and its simulation of ultra-high strength spring steel[J]. Iron and Steel, 2020, 32(12): 1157-1164. [7]刘自成, 王学林, 喻异双, 等. 高强度钢韧化机制及与亚结构关系的研究[J]. 钢铁研究学报, 2020, 32(12): 1093-1101. Liu Zicheng, Wang Xuelin, Yu Yishuang, et al. Study on toughening mechanism of high strength steel and its relationship with substructure[J]. Journal of Iron and Steel Research, 2020, 32(12): 1093-1101. [8]姜 婷, 汪开忠, 于同仁, 等. 热处理工艺对弹簧钢55SiCrV力学性能和组织的影响[J]. 金属热处理, 2019, 44(10): 96-100. Jiang Ting, Wang Kaizhong, Yu Tongren, et al. Effect of heat treatment process on mechanical properties and microstructure of 55SiCrV spring steel[J]. Heat Treatment of Metals, 2019, 44(10): 96-100. [9]赵阳磊, 王灵水, 邱胜闻, 等. 60Si2Mn弹簧钢退火过程中的组织与性能变化[J]. 金属热处理, 2021, 46(8): 181-186. Zhao Yanglei, Wang Lingshui, Qiu Shengwen, et al. Change of microstructure and properties of 60Si2Mn spring steel during annealing[J]. Heat Treatment of Metals, 2021, 26(8): 181-186. [10]Xia B, Zhang P, Wang B, et al. A simultaneous improvement of the strength and plasticity of spring steels by replacing Mo with Si[J]. Materials Science and Engineering A, 2021, 820: 141516. [11]Wang J J, Cao Y L, Xiang H J, et al. A piezoelectric smart backing ring for high-performance power generation subject to train induced steel-spring fulcrum forces[J]. Energy Conversion and Management, 2022, 257: 115442. [12]Xiao G Z, Di H S. Delayed fracture resistance and mechanical properties of 30MnSi high strength steel[J]. Journal of lron and Steel Research, 2009, 16(3): 49-54. [13]刘延强, 王丽君, 胡晓军, 等. 国内外超低氧弹簧钢生产工艺比较[J]. 钢铁研究学报, 2012, 24(12): 1-5. Liu Yanqiang, Wang Lijun, Hu Xiaojun, et al. Comparison of processing techniques used in ultra-low oxygen spring steel production both domestic and abroad[J]. Journal of Iron and Steel Research, 2012, 24(12): 1-5. [14]赵东宇, 雍岐龙, 杨庚蔚, 等. 铌对60Si2Mn弹簧钢表面脱碳敏感性的影响[J]. 钢铁, 2014, 49(5): 74-80. Zhao Dongyu, Yong Qilong, Yang Gengwei, et al. Effect of niobium on surface decarburization sensitivity of 60Si2Mn spring steel[J]. Iron and Steel, 2014, 49(5): 74-80. [15]刘耀中, 左传付. 轴承钢零件淬回火后的残留奥氏体[J]. 轴承, 2008(6): 48-51. Liu Yaozhong, Zuo Chuanfu. The retained austenite in bearing steel after quenching and tempering[J]. Bear, 2008(6): 48-51 [16]Liang J, Lu H, Zhang L, et al. A 2000 MPa grade Nb bearing hot stamping steel with ultra-high yield strength[J]. Materials Science and Engineering A, 2021, 801: 140419. [17]陈继平, 张 乐, 邢献强, 等. 氧化时间对低合金弹簧钢奥氏体晶粒度测定的影响[J]. 金属热处理, 2021, 46(8): 241-245. Chen Jiping, Zhang Le, Xing Xianqiang, et al. Effect of oxidation time on evaluation of austenite grain size of low alloy spring steel[J]. Heat Treatment of Metals, 2021, 46(8): 241-245. [18]苏德达. 弹簧(材料)应力松弛及预防[M]. 天津: 天津大学出版社, 2002. [19]Luo Z F, Jiang Y, Wu Z, et al. Effects of ultra-refine grain and micro-nano twins on mechanical properties of 51CrV4 spring steel[J]. Materials Science, 2017, 690: 225-232. [20]文 凤, 陈永利, 周雪娇, 等. 循环淬火对B/M超高强钢奥氏体晶粒细化的影响[J]. 热加工工艺, 2017(8): 196-198. Wen Feng, Chen Yongli, Zhou Xuejiao, et al. Influences of cycle quenching on austenite grain refinement of B/M ultra-high strength steel[J]. Hot Working Technology, 2017(8): 196-198. [21]Chen W J, Gao P F, Wang S, et al. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel[J]. Materials Science and Engineering A, 2020, 797: 140115. [22]Kim A B, Boucard B E, Sourmail C T, et al. The influence of silicon in tempered martensite: Understanding the microstructure-properties relationship in 0.5-0.6wt.%C steels[J]. Acta Materialia. 2014, 68(15): 169-178. [23]李东辉, 李志敏, 肖茂果,等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响[J]. 材料研究学报, 2019, 33(8): 561-571. Li Donghui, Li Zhimin, Xiao Maoguo, et al. Effect of cryogenic treatment on mechanical properties and microstructure of low carbon high alloy martensitic bearing steel[J]. Journal of Materials Research, 2019, 33(8): 561-571. |