[1]林芷青, 张福成, 马 华, 等. 锻焊和形变热处理对铸造高锰钢辙叉耐磨性的影响[J]. 金属热处理, 2021, 46(8): 92-98. Lin Zhiqing, Zhang Fucheng, Ma Hua, et al. Effect of FW&TMCP treatment on wear resistance of as-cast high manganese steel frog[J]. Heat Treatment of Metals, 2021, 46(8): 92-98. [2]Rashev T V, Eliseev A V, Zhekova L T, et al. High-nitrogen steel[J]. Steel in Translation, 2019, 49: 433-439. [3]蔡俊鸿. 金属材料磨损及其影响因素[J]. 四川冶金, 1994(4): 52-58. Cai Junhong. Wear of metal materials and its influencing factors[J]. Sichuan Metallurgy, 1994(4): 52-58. [4]Jafarian H R, Sabzi M, Anijdan S H M, et al. The influence of austenitization temperature on microstructural developments, mechanical properties, fracture mode and wear mechanism of Hadfield high manganese steel[J]. Journal of Materials Research and Technology, 2021, 10: 819-831. [5]Chaudhari R, Ingle A, Kalita K. Tribological investigation of effect of grain size in 304 austenitic stainless steel[J]. Transactions of the Indian Institute of Metals, 2017, 70(9): 2399-2405. [6]Li J, Lu Y, Zhang H, et al. Effect of grain size and hardness on fretting wear behavior of Inconel 600 alloys[J]. Tribology International, 2015, 81: 215-222. [7]Chen J, Dong F, Liu Z, et al. Grain size dependence of twinning behaviors and resultant cryogenic impact toughness in high manganese austenitic steel[J]. Journal of Materials Research and Technology, 2021, 10: 175-187. [8]刘晓军, 苏冬雪, 丁志敏. 高碳高锰钢拉伸过程中应变硬化行为的研究[J]. 大连交通大学学报, 2019, 40(5): 76-81. Liu Xiaojun, Su Dongxue, Ding Zhimin. Strain hardening behavior of high carbon and high manganese steel during tensile process[J]. Journal of Dalian Jiaotong University, 2019, 40(5): 76-81. [9]Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current Opinion in Solid State and Materials Science, 2011, 15(4): 141-168. [10]Bressan J D, Daros D P, Sokolowski A, et al. Influence of hardness on the wear resistance of 17-4 PH stainless steel evaluated by the pin-on-disc testing[J]. Journal of Materials Processing Technology, 2008, 205(1/3): 353-359. [11]Abbasi M, Kheirandish S, Kharrazi Y, et al. On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels[J]. Wear, 2010, 268(1/2): 202-207. [12]Neog S P, Bakshi S D, Das S. Effect of normal loading on microstructural evolution and sliding wear behaviour of novel continuously cooled carbide free bainitic steel[J]. Tribology International, 2021, 157: 106846. [13]Yan X, Hu J, Yu H, et al. Unraveling the significant role of retained austenite on the dry sliding wear behavior of medium manganese steel[J]. Wear, 2021, 476: 203745. [14]Yang G, Kim J K. An overview of high yield strength twinning-induced plasticity steels[J]. Metals, 2021, 11(1): 124. [15]Zambrano O A, Aguilar Y, Valdés J, et al. Effect of normal load on abrasive wear resistance and wear micromechanisms in FeMnAlC alloy and other austenitic steels[J]. Wear, 2016, 348: 61-68. [16]Zapata D, Jaramillo J, Toro A. Rolling contact and adhesive wear of bainitic and pearlitic steels in low load regime[J]. Wear, 2011, 271(1/2): 393-399. [17]Wang M M, Lü B, Yang Z N, et al. Wear resistance of bainite steels that contain aluminium[J]. Materials Science and Technology, 2016, 32(4): 282-290. [18]李 萧, 辛 龙. 晶粒度对Inconel 690合金微动磨损行为的影响[J]. 金属热处理, 2023, 48(1): 12-17. Li Xiao, Xin Long. Effect of grain size on fretting wear behavior of Inconel 690 alloy[J]. Heat Treatment of Metals, 2023, 48(1): 12-17. [19]许 沂, 袁晓光, 李智超. 加工硬化对高锰钢低温韧性的影响[J]. 金属热处理, 1998, 23(1): 16-17. Xu Yi, Yuan Xiaoguang, Li Zhichao. Effect of work hardening on low temperature toughness of ZGMn13 steel[J]. Heat Treatment of Metals, 1998, 23(1): 16-17. |