[1]葛 鹏. 贫铀材料的工业应用[J]. 稀有金属快报, 2004, 23(2): 36-37. Ge Peng. Industrial applications of depleted uranium materials[J]. Rare Metals Letters, 2004, 23(2): 36-37. [2]Orlov V K, Sergeev V M, Semenov A G, et al. Alloy of depleted uranium: Material for γ-protection of shipment packing sets[J]. Metal Science and Heat Treatment, 2004, 46(11): 479-483. [3]Van Den Berghe S, Lemoine P. Review of 15 years of high-density low-enriched UMo dispersion fuel development for research reactors in europe[J]. Nuclear Engineering and Technology, 2014, 46(2): 125-146. [4]贾建平. 混合堆背景下铀钼合金燃料材料的设计与制备技术研究[D]. 绵阳: 中国工程物理研究院, 2012. Jia Jianping. Research on the design and preparation technology of uranium-molybdenum alloy fuel materials in the background of hybrid reactors[D]. Mianyang: China Academy of Engineering Physics, 2012. [5]Kim K H, Lee D B, Kim C K, et al. Characterization of U-2 wt% Mo and U-10 wt% Mo alloy powders prepared by centrifugal atomization[J]. Journal of Nuclear Materials, 1997, 245(2): 179-184. [6]Tangri K, Williams G I. Metastable phases in the uranium molybdenum system and their origin[J]. Journal of Nuclear Materials, 1961, 4(2): 226-233. [7]张贵滨, 张振禹. 屏蔽主泵贫铀飞轮完整性分析[J]. 大电机技术, 2017(2): 47-50. Zhang Guibin, Zhang Zhenyu. Integrity analysis on depleted uranium flywheel of the shield-pump[J]. Large Electric Machine and Hydraulic Turbine, 2017(2): 47-50. [8]Parida S C, Dash S, Singh Z, et al. Thermodynamic studies on uranium-molybdenum alloys[J]. Journal of Physics and Chemistry of Solids, 2001, 62(3): 585-597. [9]Burkes D E, Hartmann T, Prabhakaran R, et al. Microstructural characteristics of DU-xMo alloys with x=7-12wt%[J]. Journal of Alloys and Compounds, 2009, 479(1): 140-147. [10]Ursu I. Physics and Technology of Nuclear Materials[M]. Oxford: Pergamon, 2015. [11]Dwight A E. The uranium-molybdenum equilibrium diagram below 900 ℃[J]. Journal of Nuclear Materials, 1960, 2(1): 81-87. [12]Lehmann M J. Phases monocliniques dans les alliages uranium-molybdene[J]. Journal of Nuclear Materials, 1961, 4(2): 218-225. [13]Mihajlović A, Kostić M, Tepavac P. Transformation in uranium-0.45% molybdenum alloy in relation to cooling rates and overheating temperature[J]. Journal of Nuclear Materials, 1969, 31(1): 107-110. [14]Craik R L, Birch D, Fizzotti C, et al. Phase Equilibria in uranium-rich binary alloys containing molybdenum and zirconium and the effect of ternary additions of carbon[J]. Journal of Nuclear Materials, 1962, 6(1): 13-25. [15]May G H. The annealing of a quenched uranium-5 at% molybdenum alloy[J]. Journal of Nuclear Materials, 1962, 7(1): 72-84. [16]Justusson W M. Transformation kinetics of gamma-phase uranium molybdenum-niobium alloys[J]. Journal of Nuclear Materials, 1961, 4(1): 37-45. [17]Lehmann M J. Processus des transformations dans les alliages uranium molybdene de faibles teneurs en molybdene[J]. Journal of Nuclear Materials, 1960, 2(2): 152-168. [18]Rechtien J J, Nelson R D. Phase transformations in uranium, plutonium, and neptunium[J]. Metallurgical Transactions, 1973, 4(12): 2755-2765. [19]Massalski T, Okamoto H, Subramanian P, et al. Binary Alloy Phase Diagrams[M]. Ohio: ASM International, 1990. [20]Kim-Ngan N T H, Tkach I, Mašková S, et al. Study of decomposition and stabilization of splat-cooled cubic γ-phase U-Mo alloys[J]. Journal of Alloys and Compounds, 2013, 580: 223-231. [21]Pedrosa T A, Santos A M, Lameiras F S, et al. Phase transitions during artificial ageing of segregated as-cast U-Mo alloys[J]. Journal of Nuclear Materials, 2015, 457: 100-117. |