[1]Wei R, Jiang Z, Gao Q, et al. A comparison of the mechanical and corrosion behavior of Fe49.5Mn25Cr15Ni10C0.5 medium-entropy alloy with its subsystems steels[J]. Intermetallics, 2022, 151: 107736. [2]Liu D, Yu Q, Kabra S,et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys close to liquid helium temperatures[J]. Science, 2022, 378(6623): 978-983. [3]Li Z, Zhao S, Ritchie R O,et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys[J]. Progress in Materials Science, 2019, 102: 296-345. [4]Gludovatz B, Hohenwarter A, Thurston K V S,et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nature Communications, 2016, 7(1): 10602. [5]Li Z, Tasan C C, Springer H,et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys[J]. Scientific Reports, 2017, 7(1-4): 40704. [6]Li Z. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior[J]. Acta Materialia, 2019, 164: 400-412. [7]Liu Xiaoru, Feng Hao, Wang Jing, et al. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels[J]. Journal of Materials Science and Technology, 2022, 108(13): 256-269. [8]Wei R, Jiang Z, Gao Q, et al. The effect of Co substitutions for Ni on microstructure, mechanical properties and corrosion resistance of Fe50Mn25Cr15Ni10 medium-entropy alloy[J]. Intermetallics, 2022, 149: 107654. [9]Wei R, Zhang K S, Chen L B, et al. Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures[J]. Journal of Materials Science Technology, 2022, 57: 153-158. [10]Chen L B, Wei R, Tang K, et al. Ductile-brittle transition of carbon alloyed Fe40Mn40Co10Cr10 high entropy alloys[J]. Materials Letters, 2019, 236: 416-419. [11]Wang Z W, Baker I, Guo W, et al. The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al17.5Cr6 high entropy alloys[J]. Acta Materialia, 2017, 126: 346-360. [12]Wang Z, Baker I, Cai Z, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al17.5Cr6 high entropy alloys[J]. Acta Materialia, 2016, 120: 228-239. [13]Klimova M V, Semenyuk A O, Shaysultanov D G, et al. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys[J]. Journal of Alloys and Compounds, 2019, 811: 152000. [14]马明星, 朱达川, 王志新, 等. Zr元素对CoCrCuFeMn高熵合金组织及耐磨性能的影响[J]. 工程科学与技术, 2021, 53(6): 204-210. Ma Mingxing, Zhu Dachuan, Wang Zhixin, et al. Effect of Zr addition on microstructure and wear properties of CoCrCuFeMn high-entropy alloy[J]. Advanced Engineering Sciences, 2021, 53(6): 204-210. [15]Chen L B, Wei R, Tang K,et al. Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility[J]. Materials Science and Engineering A, 2018, 716: 150-156. [16]Luo Z C, Huang M X. The role of interstitial carbon atoms on the strain-hardening rate of twinning-induced plasticity steels[J]. Scripta Materialia, 2020, 178(C): 264-268. [17]刘宏武, 李志昂, 高 帆, 等. Al25Nb20Ti30Zr25低密度高熵合金的组织和性能[J]. 金属热处理, 2022, 47(2): 20-25. Liu Hongwu, Li Zhiang, Gao Fan, et al. Microstructure and properties of Al25Nb20Ti30Zr25 low density high entropy alloy[J]. Heat Treatment of Metals, 2022, 47(2): 20-25. [18]高天宇, 乔珺威, 吴玉程. FeMnCoCr系亚稳高熵合金的研究进展[J]. 金属热处理, 2021, 46(4): 1-8. Gao Tianyu, Qiao Junwei, Wu Yucheng. Research progress of FeMnCoCr metastable high-entropy alloys[J]. Heat Treatment of Metals, 2021, 46(4): 1-8. |