[1]高志喆, 陈小艳, 王永金, 等. 热处理对复合铸造高铬高碳钢/碳钢耐磨材料微观组织及力学性能的影响[J]. 金属热处理, 2023, 47(8): 163-167. Gao Zhizhe, Chen Xiaoyan, Wang Yongjin, et al. Effect of heat treatment on microstructure and mechanical properties of composite cast high chromium high carbon steel/carbon steel wear-resistant materials[J]. Heat Treatment of Metals, 2023, 47(8): 163-167. [2]崔兰芳, 李 洪, 周洪涛. 压铸铝合金变速箱壳体应力热裂分析[J]. 铸造, 2016, 65(8): 795-797. Cui Lanfang, Li Hong, Zhou Hongtao. Failure analysis on stress hot tearing of casting aluminum alloy transmission box[J]. Foundry, 2016, 65(8): 795-797. [3]廖 霞. 82B盘条网状碳化物快速检验方法研究[J]. 世界有色金属, 2018, 513(21): 219-220. Liao Xia. Study on rapid inspection method of 82B wire rod network carbide[J]. World Nonferrous Metals, 2018, 513(21): 219-220. [4]李慧慧. 基于深度学习的金属表面瑕疵识别[D]. 桂林: 桂林电子科技大学, 2021. Li Huihui. Recognition of metal surface defects based on deep learning[D]. Guilin: Guilin University of Electronic Science and Technology, 2021. [5]邵先鑫. 基于机器视觉的金属表面缺陷检测的设计与研究[D]. 沈阳: 中国科学院大学(中国科学院沈阳计算技术研究所), 2022. Shao Xianxin. Design and research of metal surface defect detection based on machine vision[D]. Shenyang: University of Chinese Academy of Sciences (Shenyang Institute of Computing Technology, Chinese Academy of Sciences), 2022. [6]Jiang P, Ergu D, Liu F, et al. A review of Yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073. [7]Panboonyuen T, Thongbai S, Wongweeranimit W, et al. Object detection of road assets using transformer-based YOLOx with feature pyramid decoder on Thai highway panorama[J]. Information, 2021, 13(1): 5-10. [8]Yi C, Xu B, Chen J, et al. An improved YOLOX model for detecting strip surface defects[J]. Steel Research International, 2022, 93(11): 2200505. [9]Charuchinda P, Kasetkasem T, Kumazawa I, et al. On the use of class activation map for land cover mapping[C]//2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2019: 653-656. [10]Lin L, He H, Xu Z, et al. Realtime vehicle tracking method based on YOLOv5+DeepSORT[J]. Computational Intelligence and Neuroscience, 2023, 10(6): 7974201. [11]Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020: 12993-13000. |