[1]任 鑫, 窦春岳, 高志玉, 等. 热处理数值模拟技术的研究进展[J]. 材料导报, 2021, 35(19): 19186-19194. Ren Xin, Dou Chunyue, Gao Zhiyu, et al. Research progress of numerical simulation in heat treatment[J]. Materials Reports, 2021, 35(19): 19186-19194. [2]刘志新, 刘宪冬, 曹风角, 等. 20CrMnMo齿轮渗碳淬火组织场及硬度场的数值模拟[J]. 热加工工艺, 2013, 42(6): 204-207. Liu Zhixin, Liu Xiandong, Cao Fengjiao, et al. Numerical simulation of structure field and hardness field on carburizing and quenching process of 20CrMnMo gear[J]. Hot Working Technology, 2013, 42(6): 204-207. [3]韩永珍, 李 俏, 胡小丽, 等. 基于计算机模拟的智能化热处理的研究进展[J]. 金属热处理, 2017, 42(7): 194-199. Han Yongzhen, Li Qiao, Hu Xiaoli, et al. Research progress of intelligent heat treatment based on computer simulation[J]. Heat Treatment of Metals, 2017, 42(7): 194-199. [4]张映桃. 螺旋锥齿轮模压淬火变形机理及控制研究[D]. 重庆: 重庆大学, 2017. [5]刘付洋, 刘赣华, 谢显峰, 等. 弧齿锥齿轮动态热边界渗碳淬火工艺优化设计[J]. 机械传动, 2018, 42(3): 45-48, 71. Liu Fuyang, Liu Ganhua, Xie Xianfeng, et al. Optimization design of dynamic thermal boundary carburizing quenching process for spiral bevel gear[J]. Journal of Mechanical Transmission, 2018, 42(3): 45-48, 71. [6]唐梦兰, 吴仡璇, 仝大明, 等. 9310钢螺旋锥齿轮模压淬火的数值模拟[J]. 金属热处理, 2022, 47(5): 234-240. Tang Menglan, Wu Yixuan, Tong Daming, et al. Numerical simulation on die quenching process 9310 steel spiral bevel gear[J]. Heat Treatment of Metals, 2022, 47(5): 234-240. [7]李 垚, 赵少甫, 刘志强, 等. 大模数弧齿锥齿轮感应淬火试验研究[J]. 金属热处理, 2018, 43(3): 206-209. Li Yao, Zhao Shaofu, Liu Zhiqiang, et al. Induction hardening process of large modulus spiral bevel gear[J]. Heat Treatment of Metals, 2018, 43(3): 206-209. [8]刘赣华, 钱锦年, 邹 洋, 等. 淬火冷却介质流速对弧齿锥齿轮渗碳淬火热处理的影响[J]. 材料热处理学报, 2018, 39(2): 152-160. Liu Ganhua, Qian Jinnian, Zou Yang, et al. Influence of quenchant flow velocity on carburizing and quenching treatment of spiral bevel gear[J]. Transactions of Materials and Heat Treatment, 2018, 39(2): 152-160. [9]宋金升, 张文良, 李贤君, 等. 锻造铝合金轮毂动态淬火过程的数值模拟[J]. 金属热处理, 2019, 44(10): 213-218. Song Jinsheng, Zhang Wenliang, Li Xianjun, et al. Numerical simulation of dynamic quenching process of forged aluminum alloy wheel hub[J]. Heat Treatment of Metals, 2019, 44(10): 213-218. [10]刘华英, 彭新元, 唐龙书, 等. 不同流速下AP1000主管道淬火过程温度场的有限元模拟[J]. 金属热处理, 2020, 45(8): 147-152. Liu Huaying, Peng Xinyuan, Tang Longshu, et al. Finite element simulation of temperature field for AP1000 main pipeline during quenching under different flow rates[J]. Heat Treatment of Metals, 2020, 45(8): 147-152. [11]曲 喆, 朱小硕, 邢若飞, 等. 一种双漩涡流场强烈淬火槽的设计及流热耦合仿真[J]. 金属热处理, 2021, 46(11): 262-269. Qu Zhe, Zhu Xiaoshuo, Xing Ruofei, et al. Design and fluid-thermal coupling of a strong quenching tank with double vortex flow field[J]. Heat Treatment of Metals, 2021, 46(11): 262-269. [12]Wacławczyk M, Pozorski J, Minier J P. Probability density function computation of turbulent flows with a new near-wall model[J]. Physics of Fluids, 2004, 16(5): 1410-1422. [13]李裕龙, 廖洪烈, 胡 湛, 等. 非匹配网格的三维流固耦合问题[J]. 哈尔滨工程大学学报, 2019, 40(4): 683-688. Li Yulong, Liao Honglie, Hu Zhan, et al. 3D partitioned fluid-structure analysis based on non-matching meshes[J]. Journal of Harbin Engineering University, 2019, 40(4): 683-688. [14]Zhang R, Cong T, Tian W, et al. Effects of turbulence models on forced convection subcooled boiling in vertical pipe[J]. Annals of Nuclear Energy, 2015, 80: 293-302. [15]Esfahani A K. Numericalsimulation of heat treatment process by incorporating stress state on martensitic transformation to investigate microstructure and stress state of 1045 steel gear parts[J]. Metallurgical and Materials Transactions B, 2021, 52: 4109-4129. [16]中国机械工程学会热处理学会. 热处理手册(第4卷):热处理质量检验和技术数据[M]. 3版. 北京: 机械工业出版社, 2004: 470. [17]张俊鸽, 张伟民, 郝晓伟, 等. 动态淬火过程的流-固耦合数值模拟[J]. 材料热处理学报, 2008, 29(3): 176-180. Zhang Junge, Zhang Weimin, Hao Xiaowei, et al. Numerical simulation of dynamic quenching process based on fluid-solid coupled calculation[J]. Transactions of Materials and Heat Treatment, 2008, 29(3): 176-180. |