[1]李二盼, 梁国星, 刘东刚, 等. 42CrMo钢表面激光熔覆颗粒增强Co基涂层的组织与性能[J]. 金属热处理, 2023, 48(3): 159-165. Li Erpan, Liang Guoxing, Liu Donggang, et al. Microstructure and properties of particles reinforced Co-based coating by laser cladding on 42CrMo steel[J]. Heat Treatment of Metals, 2023, 48(3): 159-165. [2]赵丽娟, 田 震, 郭辰光. 矿用截齿失效形式及对策[J]. 金属热处理, 2015, 40(6): 194-198. Zhao Lijuan, Tian Zhen, Guo Chenguang. Failure modes and countermeasures of a mining pick[J]. Heat Treatment of Metals, 2015, 40(6): 194-198. [3]刘东刚, 梁国星, 郝新辉, 等. 不同含量WC颗粒增强激光熔覆截齿涂层性能研究[J]. 表面技术, 2023, 52(9): 408-419. Liu Donggang, Liang Guoxing, Hao Xinhui, et al. Properties of laser cladded coating on pick with different content of WC particles[J]. Surface Technology, 2023, 52(9): 408-419. [4]汪旭超. 采煤机截齿齿体耐磨性能研究[D]. 武汉: 武汉科技大学, 2011. Wang Xuchao. Study on wear resistance of tooth body of shearer[D]. Wuhan: Wuhan University of Science and Technology, 2011. [5]刘 杰. 采煤机截齿的耐磨性能分析[J]. 山西焦煤科技, 2014, 38(8): 41-42, 45. Liu Jie. Analysis on the abrasive resistance of shearer cutting picks[J]. Shanxi Coking Coal Science and Technology, 2014, 38(8): 41-42, 45. [6]赵 菲, 刘子敬, 张 杰, 等. 超细VC对激光熔覆H13合金显微组织和耐磨性的影响[J]. 表面技术, 2022, 51(2): 232-240. Zhao Fei, Liu Zijing, Zhang Jie, et al. Effect of ultra-fine VC on microstructure and wear resistance of laser cladded H13 alloy[J]. Surface Technology, 2022, 51(2): 232-240. [7]Yu Zhao, Yu Tianbiao, Sun Jiayu, et al. Effect of laser cladding on forming microhardness and tensile strength of YCF101 alloy powder in the different full lap joint modes[J]. Journal of Alloys and Compounds, 2020, 820: 150230. [8]王红颖, 崔承云, 周 杰. 工具钢表面激光熔覆Co基合金涂层的组织及性能[J]. 吉林大学学报(工学版), 2010, 40(4): 1000-1004. Wang Hongying, Cui Chengyun, Zhou Jie. Microstructure and properties of cobalt-based alloy coating on tool steel surface prepared by laser cladding[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(4): 1000-1004. [9]陈 林, 蒋永兵, 尚洪宝, 等. S31000不锈钢表面激光熔覆Stellite12合金层的组织和性能[J]. 金属热处理, 2023, 48(2): 289-294. Chen Lin, Jiang Yongbing, Shang Hongbao, et al. Microstructure and properties of laser clad Stellite12 alloy layer on S31000 stainless steel[J]. Heat Treatment of Metals, 2023, 48(2): 289-294. [10]Yang Y, Jiang Z P, Li H Z. Effect of Co-based alloy on properties of laser cladding layer[J]. IOP Conference Series: Materials Science and Engineering, 2017, 265: 012021. [11]Zhang Luan, Wang Cunshan, Han Liying, et al. Influence of laser power on microstructure and properties of laser clad Co-based amorphous composite coatings[J]. Surfaces and Interfaces, 2017, 6: 18-23. [12]Salimijazi H R, Coyle T W, Mostaghimi J, et al. Microstructure of vacuum plasma-sprayed boron carbide[J]. Journal of Thermal Spray Technology, 2005, 14(3): 362-368. [13]唐利平, 刘海雄, 李雪丰. B4C对汽车缸套激光熔覆修复涂层组织与性能的影响[J]. 热加工工艺, 2016, 45(14): 124-126. Tang Liping, Liu Haixiong, Li Xuefeng. Effects of B4C on microstructure and properties of laser cladding coating for automobile cylinder[J]. Hot Working Technology, 2016, 45(14): 124-126. [14]刘克铭, 马 壮, 王 楠, 等. Mn-B4C-SiC对中频熔敷Fe55合金覆层耐磨性能的影响[J]. 热加工工艺, 2013, 42(4): 161-163. Liu Keming, Ma Zhuang, Wang Nan, et al. Effect of Mn-B4C-SiC on wear resistance of Fe55 alloy cladding coating[J]. Hot Working Technology, 2013, 42(4): 161-163. [15]Sun Yufan, Fu Hanguang, Chen Shuangye, et al. Effects of B4C and Cr3C2 on microstructure and properties of laser cladding Co-based alloy coatings[J]. Surface Review and Letters, 2020, 27(12): 20500213. [16]高 苑, 刘 冉, 吴 韬, 等. Ti-6Al-4V合金表面激光熔覆TiAlSi+xB4C涂层的组织及耐磨性[J]. 金属热处理, 2021, 46(2): 196-200. Gao Yuan, Liu Ran, Wu Tao, et al. Microstructure and wear resistance of laser clad TiAlSi+xB4C coatings on Ti-6Al-4V alloy[J]. Heat Treatment of Metals, 2021, 46(2): 196-200. [17]Wang Wenchang, Li Jiaxing, Ge Yuan, et al. Structural characteristics and high-temperature tribological behaviors of laser cladded NiCoCrAlY-B4C composite coatings on Ti6Al4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(9): 2729-2739. [18]Chen Liaoyuan, Zhao Yu, Meng Fanwei, et al. Effect of TiC content on the microstructure and wear performance of in situ synthesized Ni-based composite coatings by laser direct energy deposition[J]. Surface and Coatings Technology, 2022, 444: 128678. [19]Qian Shaoxiang, Dai Yibo, Guo Yuhang, et al. Microstructure and wear resistance of multi-layer Ni-Based alloy cladding coating on 316LSS under different laser power[J]. Materials, 2021, 14(4): 781. [20]Ding Lin, Hu Shengsun, Quan Xiumin, et al. Microstructure and high temperature tribological performance of Co-based laser cladded coatings reinforced with in-situ TiN-VC[J]. Vacuum, 2022, 198: 110894 [21]Zhang W, Shang X, Hu M, et al. Microstructure and corrosion-wear behaviors for laser cladding repaired martensitic stainless steels using Co-based and Ni-based powders[J]. Materials Today Communications, 2023, 35: 106287. [22]Jiang Chaoping, Zhang Jun, Chen Yongnan, et al. On enhancing wear resistance of titanium alloys by laser cladded WC-Co composite coatings[J]. International Journal of Refractory Metals and Hard Materials, 2022, 107: 105902. [23]Chong Zhenzeng, Sun Yaoning, Cheng Wangjun, et al. Enhanced wear and corrosion resistances of AlCoCrFeNi high-entropy alloy coatings via high-speed laser cladding[J]. Materials Today Communications, 2022, 33: 104417. [24]Hu Yanjiao, Wang Zixuan, Pang Ming. Effect of WC content on laser cladding Ni-based coating on the surface of stainless steel[J]. Materials Today Communications, 2022, 31: 103357. [25]Chen Chunlun, Feng Aixin, Wei Yacheng, et al. Role of nano WC particles addition on the corrosion behavior of laser cladding WC/Ni coatings[J]. Materials Letters, 2023, 337: 133939. |