[1]Zhang R, Li Z, Zhang Y, et al. Numerical investigation of jet layout for annular jet cooling on a steel tube[J]. Applied Thermal Engineering, 2022, 213: 118825. [2]Torkamani H, Raygan S, Mateo C G, et al. Tensile behavior of normalized low carbon Nb-microalloyed steel in the presence of rare earth elements[J]. Materials Science and Engineering A, 2019, 749: 56-64. [3]刘晓瑾, 康 健, 李振垒, 等. 热轧无缝钢管控制冷却关键技术的开发与工业应用[J]. 轧钢, 2022, 39(1): 9-14. Liu Xiaojin, Kang Jian, Li Zhenlei, et al. Development and industrial application of key technology of controlled cooling of hot-rolled seamless steel tube[J]. Steel Rolling, 2022, 39(1): 9-14. [4]庄 钢, 陈洪琪. 我国无缝钢管产业“十三五”回顾与“十四五”发展思考[J]. 钢管, 2021, 50(5): 1-8. Zhuang Gang, Chen Hongqi. Review of development of domestic seamless steel tube industry in 13th FYP period and thinking for further development thereof in 14th FYP[J]. Steel Pipe, 2021, 50(5): 1-8. [5]Wang X, Bao X, Cen Y, et al. Experimental simulation research on TMCP of 30MnCr22 oil well pipe[J]. Materials Research Express, 2022, 9(5): 056522. [6]Lan L, Chang Z, Kong X, et al. Phase transformation, microstructure, and mechanical properties of X100 pipeline steels based on TMCP and HTP concepts[J]. Journal of Materials Science, 2017, 52: 1661-1678. [7]李 铮, 刘耀恒. 基于控制冷却技术的Q620级别高强度热轧无缝钢管开发[J]. 钢管, 2020, 49(2): 9-13. Li Zheng, Liu Yaoheng. Development of Q620 high-strength hot-rolled seamless steel tube on the basis of TMCP[J]. Steel Tube, 2020, 49(2): 9-13. [8]李振垒, 陈 冬, 康 健, 等. 在线控冷对热轧L360管线管组织和性能的影响[J]. 东北大学学报(自然科学版), 2018, 39(11): 1588-1592. Li Zhenlei, Chen Dong, Kang Jian, et al. Effect of online-cooling on microstructure and mechanical properties of hot-rolled L360 steel pipe[J]. Journal of Northeastern University (Natural Science Edition), 2018, 39(11): 1588-1592. [9]李建元, 石晓霞, 张行刚. 30MnCr25RE含稀土石油套管开发与应用[J]. 包钢科技, 2022, 48(1): 61-64. Li Jianyuan, Shi Xiaoxia, Zhang Xinggang. Development and application of 30MnCr25RE oil casing containing rare earth[J]. Baotou Steel Science and Technology, 2022, 48(1): 61-64. [10]王晓东, 包喜荣, 王宝峰, 等. 基于TMCP对套管钢30MnCr22的静态再结晶研究[J]. 热加工工艺, 2023, 52(21): 121-127. Wang Xiaodong, Bao Xirong, Wang Baofeng, et al. Research on static recrystallization of oil casing steel 30MnCr22 based on TMCP[J]. Hot Working Technology, 2023, 52(21): 121-127. [11]钟 彬, 陈义庆, 李 琳, 等. 热处理对油井管的微观组织和性能的影响[J]. 金属热处理, 2019, 44(11): 149-152. Zhong Bin, Chen Yiqing, Li Lin, et al. Effect of heat treatment on microstructure and properties of oil well steel pipes[J]. Heat Treatment of Metals, 2019, 44(11): 149-152. [12]Zhou S S, Liu X Q, Liu Z L, et al. Dynamic recrystallization behavior of vanadium microalloyed cryogenic fine grain structural steel pipe at high strain rate[J]. High Temperature Materials and Processes, 2017, 36(10): 1001-1010. [13]吉 光, 高秀华, 龙金花. 微合金元素Nb对高碳合金钢动态再结晶行为的影响[J]. 金属热处理, 2021, 46(8): 26-30. Ji Guang, Gao Xiuhua, Long Jinhua. Effect of microalloying element niobium on dynamic recrystallization behavior of high carbon alloy steel[J]. Heat Treatment of Metals, 2021, 46(8): 26-30. [14]郭雅楠, 张红梅, 孙成钱, 等. 热变形参数对X100管线钢高温变形行为和组织的影响[J]. 金属热处理, 2015, 40(5): 123-126. Guo Yanan, Zhang Hongmei, Sun Chengqian, et al. Effects of hot deformation parameters on high temperature deformation behavior and microstructure of X100 pipeline steel[J]. Heat Treatment of Metals, 2015, 40(5): 123-126. [15]Shen W, Zhang C, Zhang L, et al. Experimental study on the hot deformation characterization of low-carbon Nb-V-Ti microalloyed steel[J]. Journal of Materials Engineering and Performance, 2018, 27: 4616-4624. [16]Lin Y C, Chen M S, Zhong J. Study of static recrystallization kinetics in a low alloy steel[J]. Computational Materials Science, 2008, 44(2): 316-321. [17]倪 磊, 葛洪硕. X65M管线钢静态再结晶行为研究[J]. 特钢技术, 2020, 26(3): 21-23. Ni Lei, Ge Hongshuo. Research of static recrystallization of X65M pipeline steel[J]. Special Steel Technology, 2020, 26(3): 21-23. [18]田 研, 赵明纯. 高强度油井管钢中的Nb偏析及形成机制分析[J]. 钢铁研究学报, 2020, 32(4): 344-350. Tian Yan, Zhao Mingchun. Segregation of Nb and its formation mechanism of high strength casing steel[J]. Journal of Iron and Steel Research, 2020, 32(4): 344-350. |