[1]Schuster J C. Critical data evaluation of the aluminium-nickel-titanium system[J]. Intermetallics, 2006, 14(10): 1304-1311. [2]Wang X, Zhang Y, Zhang Z, et al. Development of Fe-Ni-Co-Al-based superelastic alloys[J]. Critical Reviews in Solid State and Materials Sciences, 2024, 49(2): 308-333. [3]昝 斌, 王 奇, 徐 宁, 等. 热处理对GH4169合金组织及硬度的影响[J]. 金属热处理, 2023, 48(7): 193-196. Zan Bin, Wang Qi, Xu Ning, et al. Effect of heat treatment on microstructure and hardness of GH4169 alloy[J]. Heat Treatment of Metals, 2023, 48(7): 193-196. [4]Sehested J. Four challenges for nickel steam-reforming catalysts[J]. Catalysis Today, 2006, 111(1/2): 103-110. [5]Fedotov A S, Antonov D O, Bukhtenko O V, et al. The role of aluminum in the formation of Ni-Al-Co-containing porous ceramic converters with high activity in dry and steam reforming of methane and ethanol[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24131-24141. [6]Yuan J Y, Lu C Q, Gu Z H, et al. Ni-Co catalyst-assisted carbon cycling for CH4-CO2 reforming[J]. Applied Catalysis B: Environmental, 2024, 341: 123318. [7]Wang C T, Zhou F, Zhou Y, et al. Investigations of strength and ductility in Ni-xCo-10Al alloys via discontinuous precipitation[J]. Materials Characterization, 2020, 163: 110318. [8]Zhou F, Zhou Y, Wang J, et al. Enlightening from γ, γ′ and β phase transformations in Al-Co-Ni alloy system: A review[J]. Current Opinion in Solid State and Materials Science, 2019, 23(6): 100784. [9]Zhou F, Zhou Y, Jiang M, et al. Ni-based aligned plate intermetallic nanostructures as effective catalysts for hydrogen evolution reaction[J]. Materials Letters, 2020, 272: 127831. [10]Zhou F, Zhou Y, Liu G G, et al. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction[J]. Rare Metals, 2021(12): 1-31. [11]赵新宝, 高斯峰, 杨初斌, 等. 镍基单晶高温合金晶体取向的选择及其控制[J]. 中国材料进展, 2013, 32(1): 24-38. Zhao Xinbao, Gao Sifeng, Yang Chubin, et al. Selection and control of crystal orientation of nickel-based single crystal superalloy[J]. Progress of Materials in China, 2013, 32(1): 24-38. [12]付志强, 何国爱, 吴赟杰, 等. 新型Co-Ni基高温合金的热变形行为及微观组织演变[J]. 金属热处理, 2024, 49(2): 1-7. Fu Zhiqiang, He Guoai, Wu Yunjie, et al. Hot deformation behavior and microstructure evolution of a novel Co-Ni-based superalloy[J]. Heat Treatment of Metals, 2024, 49(2): 1-7. [13]Hutchinson B. The cube texture revisited[J]. Materials Science Forum, 2012, 702/703: 3-10. [14]Ray R K. Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys[J]. Acta Metallurgica et Materialia, 1995, 43(10): 3861-3872. [15]Gallagher P C J. The influence of alloying, temperature, and related effects on the stacking fault energy[J]. Metallurgical Transactions, 1970, 1(9): 2429-2461. [16]Miodownik M, Wilkinson A, Martin J. On the secondary recrystallisation of MA754[J]. Acta Materialia, 1998, 46(8): 2809-2821. [17]Versnyder F I, Shank M. The development of columnar grain and single crystal high temperature materials through directional solidification[J]. Materials Science and Engineering, 1970, 6(4): 213-247. [18]Nash P, Glasgow T K. Precipitation in a rapidly solidified and aged Ni-Al-Mo alloy[J]. Acta Metallurgica, 1987, 35(11): 2627-2635. [19]Li Z B, Wang J J, Zhang Y D, et al. Texturation of Ni-Co-Mn-In ribbons by melt spinning[J]. Advanced Engineering Materials, 2010, 12(10): 1024-1028. [20]Wang C B. Numerical modeling of free surface and rapid solidi cation for simulation and analysis of melt spinning[D]. AMES, Iowa: Iowa State University, 2010. [21]Zhou Y, Nash P, Liu T, et al. The large scale synthesis of aligned plate nanostructures[J]. Scientific Reports, 2016, 6(1): 1-8. [22]Lee S Y, Nash P, Bradley S. Microstructural characterization of rapidly solidified nickel-base superalloys[J]. Journal of Materials Science, 1990, 25(2): 1219-1230. [23]Michalska-Domanska M, Norek M, Jozwik P, et al. Catalytic stability and surface analysis of microcrystalline Ni3Al thin foils in methanol decomposition[J]. Applied Surface Science, 2014, 293: 169-176. [24]Sun Y K, Chen Z, Noh H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. [25]Yi Z, Xu X B, Wu X Q, et al. Silver nanoplates: Controlled preparation, self-assembly, and applications in surface-enhanced Raman scattering[J]. Applied Physics A:Materials Science and Processing, 2013, 110(2): 335-342. |