[1]Punyafu J, Hwang S, Ihara S, et al. Microstructural factors dictating the initial plastic deformation behavior of an ultrafine-grained Fe-22Mn-0.6C TWIP steel[J]. Materials Science and Engineering A, 2023, 862: 144506. [2]Klein M W, Blinn B, Smaga M, et al. High cycle fatigue behavior of high-Mn TWIP steel with different surface morphologies[J]. International Journal of Fatigue, 2020, 134: 105499. [3]Ren T D, Shi W, Liu R D, et al. Effect of dew point on hot-dip galvanizing behavior of a high-manganese TWIP steel for automotive application[J]. Journal of Iron and Steel Research International, 2020, 27: 1200-1211. [4]Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application[J]. International Journal of Plasticity, 2000, 16(10/11): 1391-1409. [5]Bosch J, Martin U, Aperador W, et al. Corrosion behavior of high-Mn austenitic Fe-Mn-Al-Cr-C steels in NaCl and NaOH solutions[J]. Materials, 2021, 14(2): 425. [6]Wan H X, Cai Y, Song D D, et al. Effect of Cr/Mo carbides on corrosion behaviour of Fe-Mn-C twinning induced plasticity steel[J]. Corrosion Science, 2020, 167: 108518. [7]张春丽. 变形对高锰钢腐蚀性能的影响[D]. 秦皇岛: 燕山大学, 2020. Zhang Chunli. Effect of deformation on corrosion performance of high manganese steel[D]. Qinhuangdao: Yanshan University, 2020. [8]Yeganeh M, Eskandari M, Alavi-Zaree S R. A comparison between corrosion behaviors of fine-grained and coarse-grained structures of high-Mn steel in NaCl solution[J]. Journal of Materials Engineering and Performance, 2017, 26: 2484-2490. [9]陈席国, 张恩铭, 李东方. 矿山机械ZGMn13高锰钢热处理工艺研究[J]. 南方农机, 2021, 52(12): 28-30, 39. Chen Xiguo, Zhang Enming, Li Dongfang. Study on heat treatment process of ZGMn13 high manganese steel for mining machinery[J]. China Southern Agricultural Machinery, 2021, 52(12): 28-30, 39. [10]张 帅, 李全安, 朱宏喜, 等. Ca对Mg-11Gd-3Y-0.5Zr合金显微组织和耐蚀性的影响[J]. 材料热处理学报, 2019, 40(8): 17-23. Zhang Shuai, Li Quanan, Zhu Hongxi, et al. Effect of Ca on microstructure and corrosion resistance of Mg-11Gd-3Y-0.5Zr alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 17-23. [11]Qiu X W, Zhang Y P, He L, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy[J]. Journal of Alloys and Compounds, 2013, 549(2): 195-199. [12]谢庆文. CoCrFeNiTiMo高熵合金涂层的微观组织和耐蚀性能研究[D]. 南京: 南京航空航天大学, 2020. Xie Qingwen. Investigation on microstructure and corrosion resistance of CoCrFeNiTiMo high entropy alloy coating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. [13]李 琦, 刘洪喜, 张晓伟, 等. 铝合金表面激光熔覆NiCrAl/TiC复合涂层的磨损行为和耐蚀性能[J]. 中国有色金属学报, 2014, 24(11): 2805-2812. Li Qi, Liu Hongxi, Zhang Xiaowei, et al. Wear behavior and corrosion resistance of NiCrAl/TiC composite coating on aluminum alloy by laser cladding[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(11): 2805-2812. [14]Marlaud T, Deschamps A, Bley F, et al. Influence of alloy composition and heat treatment on precipitate composition in A-Zn-Mg-Cu alloys[J]. Acta Materialia, 2010, 58(1): 248-260. [15]王 力, 董超芳, 张达威, 等. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128. Wang Li, Dong Chaofang, Zhang Dawei, et al. Effect of alloying elements on initial corrosion behavior of aluminum alloy in Bangkok, Thailand[J]. Acta Metallurgica Sinica, 2020, 56(1): 119-128. [16]Randle V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials[J]. Acta Materialia, 1999, 47(15/16): 4187-4196. [17]Schuh C A, Kumar M, King W E. Analysis of grain boundary networks and their evolution during grain boundary engineering[J]. Acta Materialia, 2003, 51(3): 687-700. [18]Watanabe T. An approach to grain boundary design for strong and ductile polycrystals[J]. RES Mechanica, 1984, 11(1): 47-84. [19]Watanabe T. The importance of grain boundary character distribution (GBCD) to recrystallization, grain growth and texture[J]. Scripta Metallurgica et Materialia, 1992, 27(11): 1497-1502. [20]Laycock N J, Stewart J, Newman R C. The initiation of crevice corrosion in stainless steels[J]. Corrosion Science, 1997, 39(10/11): 1791-1809. [21]Roger Charles Newman. Local chemistry considerations in the tunnelling corrosion ofaluminium[J]. Corrosion Science, 1995, 37(3): 527-533. [22]Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review[J]. Metals, 2017, 7(2): 43. [23]Qiu Y, Thomas S, Gibson M A, et al. Corrosion of high entropy alloys[J]. NPJ Materials Degradation, 2017, 1(1): 15. |