[1]Zhang Weijun, Deevi S, Chen Guoliang. On the origin of superior high strength of Ti-45Al-10Nb alloys[J]. Intermetallics, 2002, 10(5): 403-406. [2]葛 阳, 洪大军, 张 帅, 等. 时效对新型Ti-Al-V中熵合金组织性能的影响[J]. 金属热处理, 2021, 46(6): 129-132. Ge Yang, Hong Dajun, Zhang Shuai, et al. Effect of aging on microstructure and properties of a new type of Ti-Al-V medium-entropy alloy[J]. Heat Treatment of Metals, 2021, 46(6): 129-132. [3]卢 威, 金 莹, 刘素芬, 等. Ti-Al系金属间化合物在均匀化热处理中的微观结构演变[J]. 金属热处理, 2019, 44(6): 42-46. Lu Wei, Jin Ying, Liu Sufeng, et al. Microstructure evolution of Ti-Al intermetallics during homogenization heat treatment[J]. Heat Treatment of Metals, 2019, 44(6): 42-46. [4]Cao Jun, Sun Tieliang, Guo Zhichao, et al. Enhancement of room-temperature mechanical properties of TiAl alloy by trace addition of C[J]. Materials Science and Engineering A, 2023, 884: 145598. [5]杨 锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129-147. Yang Rui. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015, 51: 129-147. [6]Kim Y. Gamma titanium aluminides: Their status and future[J]. JOM, 1995, 47(7): 39-42. [7]Chen Guoliang, Sun Zuqing, Zhou Xing. Oxidation and mechanical behavior of intermetallic alloys in the Ti-Nb-Al ternary system[J]. Materials Science and Engineering A, 1992, 153(1-2): 597-601. [8]Voice W, Henderson M, Shelton E, et al. Gamma titanium aluminide, TNB[J]. Intermetallics, 2005, 13: 959-964. [9]Liu Jinhu, Zhang Fuqiang, Nan Hai, et al. Effect of Caddition on as-cast microstructures of high Nb containing TiAl alloys[J]. Metals, 2019, 9(11): 1201. [10]Lapin J, tamborská M, Kamyshnykova K, et al. Room temperature mechanical behaviour of cast in-situ TiAl matrix composite reinforced with carbide particles[J]. Intermetallics, 2019, 105: 113-123. [11]Liang Zhenquan, Xiao Shulong, Yu Hongbao, et al. Enhanced high temperature tensile and creep properties of a β-solidified γ-TiAl alloy with the hybrid addition of C and Y2O3[J]. Intermetallics, 2022, 150: 107698. [12]Li Mingao, Xiao Shulong, Chen Yuyong, et al. The effect of carbon addition on the high-temperature properties of β solidification TiAl alloys[J]. Journal of Alloys and Compounds, 2019, 775: 441-448. [13]郭雷明, 王文焱, 黄亚博, 等. 退火工艺对铸轧钛铝复合板界面组织与性能的影响[J]. 金属热处理, 2018, 43(4): 194-198. Guo Leiming, Wang Wenyan, Huang Yabo, et al. Effect of annealing process on microstructure and properties of interface of cast and rolled Ti-Al composite plate[J]. Heat Treatment of Metals, 2018, 43(4): 194-198. [14]Yue Hangyu, Peng Hui, Li Ruifeng, et al. Effect of heat treatment on the microstructure and anisotropy of tensile properties of TiAl alloy produced via selective electron beam melting[J]. Materials Science and Engineering A, 2021, 803: 140473. [15]Chlupova A, Heczko M, Obrtlik M, et al. Effect of heat-treatment on the microstructure and fatigue properties of lamellar γ-TiAl alloyed with Nb, Mo and/or C[J]. Materials Science and Engineering A, 2020, 786: 139427. [16]Chen Liu, Zhu Langping, Guan Yongjun, et al. Tougher TiAl alloy via integration of hot isostatic pressing and heat treatment[J]. Materials Science and Engineering A, 2017, 688: 371-377. [17]Song Lin, Hu Xingguo, Wang Li, et al. Microstructure evolution and enhanced creep property of a high Nb containing TiAl alloy with carbon addition[J]. Journal of Alloys and Compounds, 2019, 807: 151649. [18]Chen Ruirun, Fang Hongze, Chen Xiaoyu, et al. Formation of TiC/Ti2AlC and α2+γ in in-situ TiAl composites with different solidification paths[J]. Intermetallics, 2017, 81: 9-15. |