[1]Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry[J]. Archives of Civil & Mechanical Engineering, 2008, 8(2): 103-117. [2]冯 燕. Q&P工艺对中锰钢力学性能和组织演变影响的研究[D]. 济南: 山东建筑大学, 2023. Feng Yan. Study on the effect of Q&P process on mechanical properties and microstructure evolution of medium manganese steel[D]. Jinan: Shandong University of Architecture, 2023. [3]Simon P, Beggs P D. A numerical performance comparison of a dual-phase steel and aluminium alloy bumper bar system[J]. International Journal of Crashworthiness, 2010, 15(4): 425-442. [4]Necati M, Ko M. Promises and problems of ultra/advanced high strength steel (U/AHSS) utilization in auto industry[C]//7th Automotive Technologies Congress. 2014. [5]Yi H Y, Yan F K, Tao N R, et al. Comparison of strength-ductility combinations between nanotwinned austenite and martensite-austenite stainless steels[J]. Materials Science and Engineering A, 2015, 647: 152-156. [6]Jin J E, Lee Y K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel[J]. Acta Materialia, 2012, 60(4): 1680-1688. [7]江海涛, 唐 荻, 米振莉. 汽车用先进高强度钢的开发及应用进展[J]. 钢铁研究学报, 2007(8): 1-6. Jiang Haitao, Tang Di, Mi Zhenli. Progress in the development and application of advanced high-strength steels for automotive applications[J]. Journal of Iron and Steel Research, 2007(8): 1-6. [8]李激光, 黄海亮, 陈俊岩. 两相区退火时间对热轧汽车用超细晶亚稳钢析出物的影响[J]. 钢铁钒钛, 2014, 35(4): 107-111. Li Jiguang, Huang Hailiang, Chen Junyan. Effect of annealing time in two-phase zone on precipitates of ultrafine-grained sub-stable steel for hot-rolled automobiles[J]. Iron Steel Vanadium Titanium, 2014, 35(4): 107-111. [9]Speer J G, Streicher A M, Matlock D K, et al. Quenching and partitioning: A fundamentally new process to create high strength trip sheet microstructures[C]//Austenite Formation and Decomposition. Chicago, 2003: 505-512. [10]Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [11]Kähkönen J, Pierce T D, Speer G J, et al. Quenched and partitioned CMnSi steels containing 0.3wt.% and 0.4wt.% carbon[J]. JOM, 2016, 68(1): 210-214. [12]Gao G, Gao B, Gui X, et al. Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06-0.42wt%C)[J]. Materials Science and Engineering A, 2019, 753: 1-10. [13]Maheswari N, Chowdhury S G, Kumar K C H, et al. Influence of alloying elements on the microstructure evolution and mechanical properties in quenched and partitioned steels[J]. Materials Science and Engineering A, 2014, 600: 12-20. [14]杨海峰, 王 利, 冯伟骏, 等. 锰含量和淬火温度对Q&P钢组织和性能的影响[J]. 热加工工艺, 2011, 40(18): 148-152. Yang Haifeng, Wang Li, Feng Weijun, et al. Effects of manganese content and quenching temperature on the microstructure and properties of Q&P steels[J]. Hot Working Technology, 2011, 40(18): 148-152. [15]Tobata J, Ngo-Huynh K L, Nakada N, et al. Role of silicon in quenching and partitioning treatment of low-carbon martensitic stainless steel[J]. ISIJ International, 2012, 52(7): 1377-1382. [16]Ghosh S, Kaikkonen P, Javaheri V, et al. Design of tough, ductile direct quenched and partitioned advanced high-strength steel with tailored silicon content[J]. Journal of Materials Research and Technology, 2022, 17: 1390-1407. [17]高鹏飞. 1300 MPa级淬火配分钢的组织调控及形变机制研究[D]. 北京: 北京科技大学, 2021. Gao Pengfei. Research on microstructure regulation and deformation mechanism of 1300 MPa quenched steel[D]. Beijing: University of Science and Technology Beijing, 2021. [18]陈雨来, 董 辰, 江海涛, 等. Si、Al元素对Q&P钢连续冷却的相变及组织影响[J]. 热加工工艺, 2010, 39(2): 10-12, 16. Chen Yulai, Dong Chen, Jiang Haitao, et al. Influence of Si and Al elements on phase transformation and microstructure of Q&P steels subjected to continuous cooling[J]. Hot Working Technology, 2010, 39(2): 10-12, 16. [19]张亚楠, 李强国, 张亚宁. 铝元素对低碳Q&P钢回火行为的影响[J]. 金属热处理, 2019, 44(5): 26-29. Zhang Yanan, Li Qiangguo, Zhang Yaning. Influence of aluminium elements on tempering behaviour of low carbon Q&P steels[J]. Heat Treatment of Metals, 2019, 44(5): 26-29. [20]Kim K, Lee S J. Effect of Ni addition on the mechanical behavior of quenching and partitioning (Q&P) steel[J]. Materials Science and Engineering A, 2017, 698: 183-190. [21]徐祖耀. 淬火-碳分配-回火(Q-P-T)工艺浅介[J]. 金属热处理, 2009, 34(6): 1-8. Xu Zuyao. Quenching-partitioning-tempering (Q-P-T) process[J]. Heat Treatment of Metals, 2009, 34(6): 1-8. [22]吴秋云. 合金元素Nb、Al和热处理工艺对Q&P钢组织性能的影响[D]. 马鞍山: 安徽工业大学, 2022. Wu Qiuyun. Influence of alloying elements Nb, Al and heat treatment process on the microstructure and properties of Q&P steel[D]. Ma'anshan: Anhui University of Technology, 2022. [23]龙 军. 钒微合金化低碳高强钢淬火-配分工艺研究[D]. 重庆: 重庆大学, 2020. Long Jun. Research on quenching and partitioning process of vanadium microalloyed low carbon high strength steel[D]. Chongqing: Chongqing University, 2020. [24]邓 杰, 宋新莉, 孙新军, 等. 含钛中锰钢淬火-配分组织及力学性能[J]. 钢铁, 2021, 56(6): 103-111. Deng Jie, Song Xinli, Sun Xinjun, et al. Quenching and partitioning microstructure and mechanical properties of medium manganese steel bearing titanium[J]. Iron and Steel, 2021, 56(6): 103-111. [25]曾 金, 栗克建, 高 翔, 等. 微合金化对Q&P钢组织性能影响的研究进展[J]. 材料热处理学报, 2023, 44(7): 1-12. Zeng Jin, Li Kejian, Gao Xiang, et al. Research progress on the effect of microalloying on the microstructure and properties of Q&P steels[J]. Transactions of Materials and Heat Treatment, 2023, 44(7): 1-12. [26]De Moor E, Speer J G. Bainitic and Quenching and Partitioning Steels[M]//Chapter 10 in Automotive Steels. Springer Group, 2017: 289-316. [27]Hillert M, Ågren J. On the definitions of paraequilibrium and orthoequilibrium[J]. Scripta Materialia, 2004, 50(5): 697-699. [28]Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite—A novel steel heat treatment[J]. Materials Science and Engineering A, 2006, 438: 25-34. [29]Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel[J]. Acta Materialia, 2016, 113: 124-139. [30]Kumar S, Singh S B. Microstructure-property relationship in the quenching and partitioning (Q&P) steel[J]. Materials Characterization, 2023, 196: 112561. [31]Zhang J, Ding H, Misra R D K, et al. Enhanced stability of retained austenite and consequent work hardening rate through pre-quenching prior to quenching and partitioning in a Q-P microalloyed steel[J]. Materials Science and Engineering A, 2014, 611: 252-256. [32]苏长珠. 1000 MPa级热轧超高强钢组织与塑韧性的研究[D]. 武汉: 武汉科技大学, 2022. Su Changzhu. Study on the microstructure and plastic toughness of 1000 MPa hot-rolled ultra-high-strength steel[D]. Wuhan: Wuhan University of Science and Technology, 2022. [33]Ding R, Tang D, Zhao A, et al. Effect of ultragrain refinement on quenching and partitioning steels manufactured by a novel method[J]. Materials & Design, 2015, 87: 640-649. [34]Sun S, Zhao A. Effect of microstructure morphology on mechanical properties of quenching and partitioning steel[J]. Materials Science and Technology, 2017, 34(3): 347-354. [35]Oliver S, Jones T B, Fourlaris G. Dual phase versus TRIP strip steels: Microstructural changes as a consequence of quasi-static and dynamic tensile testing[J]. Materials Characterization, 2007, 58(4): 390-400. [36]Weng Yuqing, Dong Han, Gan Yong. Development and Application of Q&P Sheet Steels[M]//Chapter 25 in Advanced Steels. Springer Group, 2011: 255-258. [37]Yan S, Liu X, Liu W J, et al. Comparison on mechanical properties and microstructure of a C-Mn-Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) processes[J]. Materials Science & Engineering A, 2015, 620: 58-66. [38]程远遥, 赵 刚, 许德明, 等. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423. Cheng Yuanyao, Zhao Gang, Xu Deming, et al. Effect of austenitising temperature on microstructure and mechanical properties of hot rolled Si-Mn steel plates after quenching-partitioning treatment[J]. Acta Metallurgica Sinica, 2023, 59(3): 413-423. [39]Yi H L, Chen P, Bhadeshia H K D H. Optimizing the morphology and stability of retained austenite in a δ-TRIP steel[J]. Metallurgical and Materials Transactions A, 2014, 45(8): 3512-3518. [40]Santofimia M J, Nguyen-Minh T, Zhao L, et al. New low carbon Q&P steels containing film-like intercritical ferrite[J]. Materials Science and Engineering A, 2010, 527(23): 6429-6439. [41]Yan S, Liu X H, Liu W J, et al. Comparative study on microstructure and mechanical properties of a C-Mn-Si steel treated by quenching and partitioning (Q&P) processes after a full and intercritical austenitization[J]. Materials Science & Engineering A, 2017, 684: 261-269. [42]阎 骏, 周博文, 樊 雷. 奥氏体化温度对C-Si-Mn钢淬火-配分后显微组织与拉伸性能的影响[J]. 机械工程材料, 2023, 47(2): 39-43, 49. Yan Jun, Zhou Bowen, Fan Lei. Effect of austenitising temperature on microstructure and tensile properties of C-Si-Mn steels after quenching and partitioning[J]. Materials for Mechanical Engineering, 2023, 47(2): 39-43, 49. [43]Li J Y, Xu Y B, Lu B, et al. Improvement of strength-ductility combination in ultra-high-strength medium-Mn Q&P steel by tailoring the characteristics of martensite/retained austenite constituents[J]. Journal of Materials Research and Technology, 2022, 18: 352-369. [44]王跃华, 李 然, 宋进英, 等. 奥氏体化时间对I&Q&P工艺处理低碳硅锰钢组织和拉伸性能的影响[J]. 机械工程材料, 2016, 40(11): 54-57. Wang Yuehua, Li Ran, Song Jinying, et al. Effect of austenitising time on the microstructure and tensile properties of low carbon silicomanganese steel treated by I&Q&P process[J]. Materials for Mechanical Engineering, 2016, 40(11): 54-57. [45]陈连生, 杨 栋, 田亚强, 等. 奥氏体化保温时间对低碳硅锰Q&P钢组织性能影响的研究[J]. 热加工工艺, 2014, 43(10): 188-190, 193. Chen Liansheng, Yang Dong, Tian Yaqiang, et al. Study on the effect of austenitising holding time on the microstructure and properties of low carbon Si-Mn Q&P steel[J]. Hot Working Technology, 2014, 43(10): 188-190, 193. [46]Kurup V, Siyasiya C W, Mostert R J. Effect of the quench temperature on the mechanical properties of a medium C Mn high Si steel during Q&P heat treatment process[J]. IOP Conference Series: Materials Science and Engineering, 2019, 655: 012002. [47]李子健. 中碳合金钢Q&P处理的组织与性能研究[D]. 沈阳: 东北大学, 2019. Li Zijian. Study on the microstructure and properties of medium carbon alloy steel Q&P treatment[D]. Shenyang: Northeastern University, 2019. [48]冯树明, 万德成, 王亚婷, 等. Q&P处理低碳中锰钢的显微组织与力学性能[J]. 金属热处理, 2020, 45(4): 69-74. Feng Shuming, Wan Decheng, Wang Yating, et al. Microstructure and mechanical properties of Q&P-treated low carbon medium manganese steel[J]. Heat Treatment of Metals, 2020, 45(4): 69-74. [49]贾坤宁, 沈鸿兴. 淬火冷却终止温度对Q&P处理TRIP800钢组织与性能的影响[J]. 金属热处理, 2017, 42(11): 166-169. Jia Kunning, Shen Hongxing. Effect of quench cooling termination temperature on the microstructure and properties of Q&P treated TRIP800 steel[J]. Heat Treatment of Metals, 2017, 42(11): 166-169. [50]左智成, 苏 钰, 李 军. 加热速率和配分时间对低碳Q&P钢组织及性能的影响[J]. 材料导报, 2021, 35(12): 12156-12160. Zuo Zhicheng, Su Yu, Li Jun. Effects of heating rate and partitioning time on the microstructure and properties of low carbon Q&P steels[J]. Materials Reports, 2021, 35(12): 12156-12160. [51]Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging[J]. Acta Materialia, 2010, 59: 658-670. [52]]Moor E D, Lacroix S, Clarke A J, et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J]. Metallurgical and Materials Transactions A, 2008, 39(11): 2586-2595. [53]吴 腾, 陈梦园, 吴 润. 配分温度对热轧Q&P钢组织性能的影响[J]. 热处理技术与装备, 2021, 42(1): 6-10. Wu Teng, Chen Mengyuan, Wu Run. Influence of partitioning temperature on the microstructure and properties of hot-rolled Q&P steels[J]. Heat Treatment Technology and Equipment, 2021, 42(1): 6-10. [54]吴 腾, 李婉淇, 谢瑞林, 等. 不同配分时间对低碳热轧Q&P钢组织性能的影响[J]. 材料热处理学报, 2022, 43(9): 140-146. Wu Teng, Li Wanqi, Xie Ruilin, et al. Effects of different partitioning time on the microstructure and properties of low carbon hot rolled Q&P steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(9): 140-146. [55]王建军, 焦贵鹏, 刘沿东, 等. Q&P热处理工艺对C-Si-Mn钢组织性能的影响[J]. 材料热处理学报, 2013, 34(3): 104-107. Wang Jianjun, Jiao Guipeng, Liu Yandong, et al. Effect of Q&P heat treatment process on the microstructure and properties of C-Si-Mn steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(3): 104-107. |