[1]]García-León R A, Martínez-Trinidad J, Campos-Silva I. Historical review on the boriding process using bibliometric analysis[J]. Transactions of the Indian Institute of Metals, 2021, 74(3): 541-557. [2]]Mischler S, Muñoz A I. Wear of CoCrMo alloys used in metal-on-metal hip joints: A tribocorrosion appraisal[J]. Wear, 2013, 297(1/2): 1081-1094. [3]Yang R, Guo X, Yang H J, et al. Tribological behavior of boronized Fe40Mn20Cr20Ni20 high-entropy alloys in high temperature[J]. Surface and Coatings Technology, 2023, 464: 129572. [4]]Lindner T, Löbel M, Sattler B, et al. Surface hardening of FCC phase high-entropy alloy system by powder-pack boriding[J]. Surface and Coatings Technology, 2018, 371: 389-394. [5]Sezgin C T, Hayat F. The effects of boriding process on tribological properties and corrosive behavior of a novel high manganese steel[J]. Journal of Materials Processing Technology, 2022, 300: 117421. [6]陈树旺. 渗硼热处理[M]. 北京: 机械工业出版社, 1985. [7]]Qu Deyi, Liu Dan, Wang Xinyu, et al. Corrosion and wear properties of TB2 titanium alloy borided by pack boriding with La2O3[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 868-881. [8]]Ouyang D, Cui X, Lu S. Growth kinetics of the FeB/Fe2B boride layer on the surface of 4Cr5MoSiV1 steel: Experiments and modelling[J]. Journal of Materials Research and Technology, 2021, 11(7): 1272-1280. [9]林祥丰, 黎向锋, 张瑞容. 45钢低温渗硼层的组织与性能[J]. 金属热处理, 1998, 23(10): 23-26. Lin Xiangfeng, Li Xiangfeng, Zhang Ruirong. Structure and properties of the low temperature boriding layer for steel 45[J]. Heat Treatment of Metals, 1998, 23(10): 23-26. [10]郭忠诚, 杨显万, 刘鸿康, 等. 低温电解渗硼的工艺及性能研究[J]. 有色金属, 1997(2): 44-46. Guo Zhongcheng, Yang Xianwang, Liu Hongkang, et al. Process and properties of electrolytic boronizing at low temperature[J]. Nonferrous Metals, 1997(2): 44-46. [11]]Xie F, Cheng J, Wang S. Effects and mechanisms of an alternating current field on pack boriding[J]. Vacuum, 2018, 148: 41-47. [12]]Xie F, Sun L. A novel approach to achieve thick single phase Fe2B coating by alternating current field enhanced pack boriding[J]. Physics Procedia, 2013, 50: 88-93. [13]]谢 飞, 程 健, 潘建伟. 电场频率对45钢交流电场增强粉末法渗硼的影响[J]. 中国表面工程, 2018, 31(1): 39-44. Xie Fei, Cheng Jian, Pan Jianwei. Influences of current field frequency on alternating current field enhanced pack boriding on 45 steel[J]. China Surface Engineering, 2018, 31(1): 39-44. [14]Campos-Silva I, Hernandez-Rámirez E J, Contreras-Hernández A, et al. Pulsed-DC powder-pack boriding: Growth kinetics of boride layers on an AISI 316L stainless steel and Inconel 718 superalloy[J]. Surface and Coatings Technology, 2021, 421: 127404. [15]]Campos-Silva I, Franco-Raudales O, Meda-Campaña J A, et al. Growth kinetics of CoB-Co2B layers using the powder-pack boriding process assisted by a direct current field[J]. High Temperature Materials Process, 2019, 38: 158-167. [16]谢 飞, 王晓娟, 潘建伟. 交流电场增强45钢中温粉末法硼铝共渗特性[J]. 中国表面工程, 2020, 33(4): 121-127. Xie Fei, Wang Xiaojuan, Pan Jianwei. Characterization of alternating current field enhanced pack boron-aluminizing at a medium temperature for 45 steel[J]. China Surface Engineering, 2020, 33(4): 121-127. [17]]Xie F, Sun L, Pan J W. Characteristics and mechanisms of accelerating pack boriding by direct current field at low and moderate temperatures[J]. Surface and Coatings Technology, 2012, 206(11/12): 2839-2844. [18]王晓娟, 谢 飞, 程 健, 等. 45钢直流电场增强粉末法渗硼层相结构与性能[J]. 材料热处理学报, 2015, 36(2): 197-202. Wang Xiaojuan, Xie Fei, Cheng Jian, et al. Phase structure and property of boriding case of 45 steel by direct current field enhanced pack boronizing[J]. Transactions of Materials and Heat Treatment, 2015, 36(2): 197-202. [19]程 健, 谢 飞, 孙 力, 等. 交流电场增强45钢中低温粉末法渗硼特性[J]. 金属学报, 2014, 50(11): 1311-1318. Cheng Jian, Xie Fei, Sun Li, et al. Characterization of alternating current field enhanced pack boriding for 45 carbon steel at low and medium temperatures[J]. Acta Metallurgica Sinica, 2014, 50(11): 1311-1318. [20]朱万利, 包建勋, 张 舸, 等. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 120-127. Zhu Wanli, Bao Jianxun, Zhang Ge, et al. Research progress of diamond/SiC composites[J]. Materials Reports, 2023, 37(10): 120-127. [21]]Abderrazak H, Hmida E S B H. Silicon Carbide: Synthesis and Properties[M]// Rosario Gerhardt. Properties and Applications of Silicon Carbide. IntechOpen, 2011. [22]江东亮, 李龙士, 欧阳世翕, 等. 中国材料工程大典(第8卷)—无机非金属材料工程[M]. 北京: 化学工业出版社, 2006. [23]王浩楠, 闫晋文, 李顺强, 等. 回火工艺对40CrNiMo钢组织与性能的影响[J]. 南京理工大学学报, 2022, 46(3): 367-372. Wang Haonan, Yan Jinwen, Li Shunqiang, et al. Effect of tempering on microstructure and mechanical properties of 40CrNiMo steel[J]. Journal of Nanjing University of Science and Technology, 2022, 46(3): 367-372. [24]支 龙, 陈红斌, 袁 满, 等. 回火温度对淬火态40CrNiMoA钢组织与力学性能的影响[J]. 热加工工艺, 2018, 47(18): 200-202. Zhi Long, Chen Hongbin, Yuan Man, et al. Effects of tempering temperature on microstructure and mechanical properties of quenched 40CrNiMoA steel[J]. Hot Working Technology, 2018, 47(18): 200-202. [25]潘 乐, 王玲奇. 回火温度对40CrNiMo钢显微组织和力学性能的影响[J]. 热处理, 2020, 35(4): 26-28. Pan Le, Wang Lingqi. Influence of tempering temperature on microstructure and mechanical property of 40CrNiMo7 steel[J]. Heat Treatment, 2020, 35(4): 26-28. |