[1]韩妙玲, 王 静, 张国峰, 等. 精密齿轮件的真空低压渗碳高压气淬热处理[J]. 金属热处理, 2019, 44(6): 184-186. Han Miaoling, Wang Jing, Zhang Guofeng, et al. Vacuum low pressure carburizing and high pressure gas quenching heat treatment of precision gear[J]. Heat Treatment of Metals, 2019, 44(6): 184-186. [2]赵振东. 低压真空渗碳的应用与展望[J]. 金属加工(热加工), 2012(3): 6-9. [3]张连进. 真空渗碳技术的进展[J]. 真空, 2003(1): 42-45. Zhang Lianjin. Development of low pressure carburizing technology[J]. Vacuum, 2003(1): 42-45. [4]张建国, 丛培武. 真空渗碳技术国内外概况及发展[J]. 金属热处理, 2003, 28(10): 52-55. [5]刘尚杰. 乙炔低压渗碳工艺研究[J]. 汽车工艺与材料, 2011(9): 32-34. [6]刘晔东, 曾爱群. 乙炔低压渗碳的工艺及装备[J]. 热处理, 2005(3): 51-55. Liu Yedong, Zeng Aiqun. Process and equipment of acetylene low pressure carburizing[J]. Heat Treatment, 2005(3): 51-55. [7]王志新, 施建军, 梅俊歌, 等. 20CrNi2Mo钢真空渗碳工艺及数值模拟[J]. 金属热处理, 2017, 42(11): 117-122. Wang Zhixin, Shi Jianjun, Mei Junge, et al. Numerical simulation on vacuum carburization of 20CrNi2Mo steel[J]. Heat Treatment of Metals, 2017, 42(11): 117-122. [8]Qin M. 汽车工业中的真空渗碳和高压气淬技术[J]. 顾剑锋, 译. 热处理, 2012, 27(5): 52-56. Qin M. Vacuum carburizing and high pressure gas quenching technology in automotive industry[J]. Gu Jianfeng, Trans. Heat Treatment, 2012, 27(5): 52-56. [9]吴 平. 浅谈低压真空渗碳热处理技术[J]. 中国设备工程, 2020(13): 203-205. [10]陈旭阳, 丛培武, 范 雷, 等. 基于饱和值调整法的真空低压渗碳工艺计算与验证[J]. 金属热处理, 2020, 45(9): 233-236. Chen Xuyang, Cong Peiwu, Fan Lei, et al. Calculation and verification of vacuum low pressure carburizing process based on saturation adjustment method[J]. Heat Treatment of Metals, 2020, 45(9): 233-236. [11]孙振淋, 张 茜, 辛玉武, 等. 渗碳方式对18CrNi4A钢齿轮渗层的影响[J]. 金属热处理, 2015, 40(12): 128-131. Sun Zhenlin, Zhang Qian, Xin Yuwu, et al. Effect of carburizing method on carburized layer of 18CrNi4A steel gear[J]. Heat Treatment of Metals, 2015, 40(12): 128-131. [12]Sueno S T H, Imataka H. Development of application technology for vacuum carburizing[J]. Nippon Steel and Sumitomo Metal Technical Report, 2017, 116(9): 14-19. [13]Krupanek K, Sawicki J, Buzalski V. Numerical simulation of phase transformation during gas quenching after low pressure carburizing[J]. IOP Conference Series: Materials Science and Engineering, 2020, 743: 12047. [14]刘志新, 刘宪冬, 曹风角, 等. 20CrMnMo齿轮渗碳淬火组织场及硬度场的数值模拟[J]. 热加工工艺, 2013, 42(6): 204-207. Liu Zhixin, Liu Xiandong, Cao Fengjiao, et al. Numerical simulation of structure field and hardness field on carburizing and quenching process of 20CrMnMo gear[J]. Hot Working Technology, 2013, 42(6): 204-207. [15]任 伟, 张天德, 吴国华, 等. 20CrMnTi钢真空低压渗碳工艺及组织性能研究[J]. 热加工工艺, 2015, 44(16): 187-190. Ren Wei, Zhang Tiande, Wu Guohua, et al. Study on microstructure and properties of 20CrMnTi steel after vacuum carburizing[J]. Hot Working Technology, 2015, 44(16): 187-190. [16]王 鑫, 顾 敏. 齿轮渗碳淬火工艺过程及其畸变的模拟技术研究发展与展望[J]. 热加工工艺, 2019, 48(8): 9-13. Wang Xin, Gu Min. Research development and prospects of simulation technique of gear carburizing quenching process and distortion[J]. Hot Working Technology, 2019, 48(8): 9-13. [17]许 瑾. 42CrMo钢热处理过程数值模拟及换热系数的测定[D]. 大连: 大连交通大学, 2013. [18]陈 卫, 刘 勇, 王顺兴. 碳的扩散系数和传递系数的一种计算方法[J]. 河南科技大学学报(自然科学版), 2003, 24(3): 11-13. Chen Wei, Liu Yong, Wang Shunxing. A calculating method for carbon diffusivity and transfer coefficient[J]. Journal of Henan University of Science and Technology (Natural Science), 2003, 24(3): 11-13. |