[1]Ali Y, Garcia-Mendoza C D, Gates J D. Effects of 'impact' and abrasive particle size on the performance of white cast irons relative to low-alloy steels in laboratory ball mills[J]. Wear, 2019, 426/427: 83-100. [2]王会亮. 金属材料失效浅析[J]. 山西冶金, 2016, 39(4): 114-115. Wang Huiliang. Failure analysis of metal materials[J]. Shanxi Metallurgy, 2016, 39(4): 114-115. [3]董振东, 童 志, 周洪宇, 等. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169. Dong Zhendong, Tong Zhi, Zhou Hongyu, et al. Service failure of sucker rods and development of sucker rod steels: A review[J]. Materials Reports, 2021, 35(19): 19161-19169. [4]张 伟. 浅谈金属材料磨损失效及防护措施[J]. 科学技术创新, 2020(18): 23-24. Zhang Wei. Discussion on wear failure and protective measures of metal materials[J]. Science and Technology Innovation, 2020(18): 23-24. [5]杨晓江, 白 敏, 张大勇, 等. 耐磨钢的研究现状[J]. 热加工工艺, 2021, 50(21): 7-10. Yang Xiaojiang, Bai Min, Zhang Dayong, et al. Research status of wear-resistant steel[J]. Hot Working Technology, 2021, 50(21): 7-10. [6]张 浩, 迟宏宵, 王成蹊, 等. 新型N合金化Cr13型耐蚀塑料模具钢的组织性能[J]. 金属热处理, 2023, 48(5): 110-115. Zhang Hao, Chi Hongxiao, Wang Chengxi, et al. Microstructure and properties of novel nitrogen-alloyed corrosion resistant plastic die steel Cr13[J]. Heat Treatment of Metals, 2023, 48(5): 110-115. [7]Uzun M, Usca U A. Effect of Cr particulate reinforcements in different ratios on wear performance and mechanical properties of Cu matrix composites[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(4): 1130-1138. [8]何 强, 揭晓华, 郑志斌, 等. 碳含量对中铬合金钢组织与力学性能的影响[J]. 钢铁研究学报, 2023, 35(5): 586-594. He Qiang, Jie Xiaohua, Zheng Zhibin, et al. Effect of carbon content on microstructure and mechanical properties of medium chromium alloy steel[J]. Journal of Iron and Steel Research, 2023, 35(5): 586-594. [9]Xu W L, Yu J M, Jia L C, et al. Grain refinement impact on the mechanical properties and wear behavior of Mg-9Gd-3Y-2Zn-0.5Zr alloy after decreasing temperature reciprocating upsetting-extrusion[J]. Journal of Magnesium and Alloys, 2022, 10(12): 3506-3519. [10]Gong L Q, Fu H G, Zhi X H. Corrosion wear of hypereutectic high chromium cast iron: A review[J]. Metals, 2023, 13(2): 308. [11]黄笑梅, 徐 通, 周宏伟, 等. 多元合金化亚共晶铝硅合金组织及强度的研究[J]. 热加工工艺, 2022, 51(17): 19-21, 26. Huang Xiaomei, Xu Tong, Zhou Hongwei, et al. Study of microstructure and strength of multi-alloying hypo-eutectic Al-Si alloy[J]. Hot Working Technology, 2022, 51(17): 19-21, 26. [12]王晶辉. 含Mo铁基烧结材料的制备及组织性能研究[D]. 合肥: 合肥工业大学, 2021. Wang Jinghui. Preparation, microstructure and properties of molybdenum containing ferrous sintered materials[D]. Hefei: Hefei University of Technology, 2021. [13]Ali S L, Dichu X, Barker R C, et al. Effect of chromium and molybdenum increment on the crystal structure, nanoindentation, and corrosion properties of cobalt—Based alloys[J]. Physica Status Solidi (A), 2022, 219(23): 2200373. [14]Huang T, Zhamg Y, Zhang Z W, et al. Effects of Mo content on the precipitation behavior and martensitic transformation in FeNiCoAlMo alloy[J]. Materials Characterization, 2023, 199: 112787. [15]高龙永. 耐磨钢成分设计思路的研究与应用[J]. 山西冶金, 2022, 45(3): 17-18, 22. Gao Longyong. Research and application of composition design ideas of wear resistant steel[J]. Shanxi Metallurgy, 2022, 45(3): 17-18, 22. [16]Ha D J, Sung H K, Lee P S. Effects of alloying elements on microstructure, hardness, wear resistance, and surface roughness of centrifugally cast high-speed steel rolls[J]. Metallurgical and Materials Transactions A, 2009, 40: 2568-2577. [17]Ayadi S, Hadji A, Hakan K. Microstructure and wear behavior of a Cr-Mo-Nb alloyed manganese steel[J]. Journal of Materials Research and Technology, 2020, 9(5): 11545-11562. [18]Wu D, Zhang Q Y, Liu W. Effect of alloying elements on the sharpness retention of knife blades made of high carbon martensitic stainless steels[J]. Metals, 2022, 12(3): 12030472. [19]Filho A I, Silva R V D, Oliveira P G B D, et al. Influence of niobium and molybdenum on mechanical strength and wear resistance of microalloyed steels[J]. Materials Research, 2017(4): 1029-1034. [20]谢志翔, 刘清友, 杨景红, 等. 微量钼对微合金钢动态再结晶的影响[J]. 钢铁研究学报, 2009, 21(1): 33-36. Xie Zhixiang, Liu Qingyou, Yang Jinghong, et al. Effect of microalloying element Mo on dynamic recrystallization of microalloyed steels[J]. Journal of Iron and Steel Research, 2009, 21(1): 33-36. [21]黄 龙, 邓想涛, 王昭东. 回火温度对颗粒增强型低合金耐磨钢组织和性能的影响[J]. 金属热处理, 2022, 47(3): 1-6. Huang Long, Deng Xiangtao, Wang Zhaodong. Effect of tempering temperature on microstructure and properties of particle reinforced low-alloyed wear resistant steel[J]. Heat Treatment of Metals, 2022, 47(3): 1-6. [22]杜思敏, 李 雄, 林发驹. 热处理工艺对Cr12MoV钢组织及硬度的影响[J]. 钢铁钒钛, 2021, 42(3): 148-154. Du Simin, Li Xiong, Lin Faju. Effect of heat treatment process on microstructure and hardness of Cr12MoV steel[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 148-154. [23]王晓磊, 邓想涛, 付天亮, 等. 稀土铈对内生TiC型超级耐磨钢组织性能的影响[J]. 钢铁, 2021, 56(7): 115-122. Wang Xiaolei, Deng Xiangtao, Fu Tianliang, et al. Effect of rare earth Ce on microstructure and properties of super wear-resistant steel with in-situ TiC particles[J]. Iron and Steel, 2021, 56(7): 115-122. [24]平德海, 胡冠杰, 殷 匠. 碳钢马氏体组织基本科学问题的探讨[J]. 热处理, 2022, 37(3): 31-33. Ping Dehai, Hu Guanjie, Yin Jiang. Discussion on fundamental scientific issues of martensite in carbon steels[J]. Heat Treatment, 2022, 37(3): 31-33. [25]Liu B G, Lu X W, Li W, et al. Enhanced wear resistance of nanotwinned austenite in higher Si nanostructured bainitic steel[J]. Wear, 2018, 398: 22-28. [26]Zhang Z Z, Chen Y B, Zuo L L, et al. The effect of volume fraction of WC particles on wear behavior of in-situ WC/Fe composites by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2017, 69: 196-208. [27]石红信, 张永振, 孙 超, 等. 中碳钢/不锈钢磁场摩擦中磨屑的行为和作用[J]. 摩擦学学报, 2019, 39(2): 188-196. Shi Hongxin, Zhang Yongzhen, Sun Chao, et al. Behaviors and effect of the wear debris during friction between medium-carbon steel and stainless steel with the magnetic field[J]. Tribology, 2019, 39(2): 188-196. |