[1]罗 艳, 杨 文, 刘占礼, 等. 真空精炼过程底吹氩气工艺对风电钢中大颗粒夹杂物的影响[J]. 炼钢, 2023, 39(2): 28-35. Luo Yan, Yang Wen, Liu Zhanli, et al. Effect of the bottom blowing process on large-size inclusions in wind power steel during vacuum refining process[J]. Steelmaking, 2023, 39(2): 28-35. [2]黄星武. Q345D风电钢探伤不合格原因分析[J]. 钢铁研究, 2017, 45(6): 98-101. Huang Xingwu. Cause analysis of flaw detection unqualified for wind power steel Q345D[J]. Journal of Iron and Steel, 2017, 45(6): 98-101. [3]孔 鹏, 陈晓山, 李进宝, 等. 风电钢厚板低温轧制板形翘曲原因分析及改进[J]. 新疆钢铁, 2018(1): 33-36. Kong Peng, Chen Xiaoshan, Li Jinbao, et al. Cause analysis of plate warpage in low temperature rolling process of thick plate for wind power steel & improvement[J]. Xinjiang Iron and Steel, 2018(1): 33-36. [4]李立民. 风电钢钢中夹杂物探讨[J]. 新疆钢铁, 2017, 15(2): 20-22. Li Limin. Analysis of inclusion condition in wind-electric steel[J]. Xinjiang Iron and Steel, 2017, 15(2): 20-22. [5]马占福. 风电钢轧制工艺优化对产品组织影响的试验研究[J]. 新疆钢铁, 2022, 26(2): 11-14. Ma Zhanfu. Experimental analysis on the influence of rolling process optimization of plate wind power steel on product microstructure[J]. Xinjiang Iron and Steel, 2022, 26(2): 11-14. [6]付振坡, 赵晓萍, 李双江, 等. 风电钢焊后热影响区探伤不合原因分析[J]. 炼钢, 2020, 36(6): 67-71. Fu Zhenpo, Zhao Xiaoping, Li Shuangjiang, et al. Cause analysis of flaw detection defect in heat affected zone after welding of wind power steel[J]. Steelmaking, 2020, 36(6): 67-71. [7]顾晓明, 吕蓝冰. 风电增速箱18CrNiMo7-6滚道行星轮冲击性能可靠性分析[J]. 金属加工(热加工), 2023(10): 92-96. Gu Xiaoming, Lü Lanbing. Reliability analysis of impact performance of the 18CrNiMo7-6 rolling path planetary wheel for wind power booster box[J]. MW Metal Forming, 2023(10): 92-96. [8]王 刚, 韩晓宋, 张 悦, 等. 表层改性及应力集中对18CrNiMo7-6合金钢疲劳分散性的影响[J]. 钢铁, 2023, 58(8): 202-211. Wang Gang, Han Xiaosong, Zhang Yue, et al. Effect of surface layer modification and stress concentration on fatigue dispersion of 18CrNiMo7-6 steel[J]. Iron and Steel, 2023, 58(8): 202-211. [9]Xu G T, Luo J, Lu F Q, et al. Characterization of fracture toughness for surface-modified layer of the 18CrNiMo7-6 alloy steel after carburizing heat treatment by indentation method[J]. Engineering Fracture Mechanics, 2022, 269: 108508. [10]Zhou X M, Mao X Y, Su G. The deformation behavior of the gradient nanostructured microstructure of low-carbon steel under the tensile stress[J]. Materials Science and Engineering A, 2022, 844: 143209. [11]王小双, 邓云飞, 李家武. 风电钢板表面花斑缺陷的成因与预防措施[J]. 宽厚板, 2015(5): 17-19. Wang Xiaoshuang, Deng Yunfei, Li Jiawu. Cause analysis and preventive measures of granophyric defects for wind power steel plate[J]. Wide and Heavy Plate, 2015(5): 17-19. [12]张军豪, 王文先, 闫志峰, 等. 18CrNiMo7-6高铁齿轮钢的疲劳极限评定[J]. 机械工程材料, 2023, 47(3): 19-23, 36. Zhang Junhao, Wang Wenxian, Yan Zhifeng, et al. Fatigue limit assessment of 18CrNiMo7-6 high-speed train gear steel[J]. Materials for Mechanical Engineering, 2023, 47(3): 19-23, 36. [13]谢一夔, 王启丞, 陈子坤, 等. 18CrNiMo7-6齿轮钢的热变形行为及组织演变规律[J]. 金属热处理, 2023, 48(2): 103-109. Xie Yikui, Wang Qicheng, Chen Zikun, et al. Hot deformation behavior and microstructure evolution of 18CrNiMo7-6 gear steel[J]. Heat Treatment of Metals, 2023, 48(2): 103-109. [14]Pan H J, Wang Z, Zhang J S, et al. The effects of Q&P on microstructures and mechanical properties of a 18CrNiMo7-6 steel[J]. Materials Science and Engineering A, 2022, 86l: 144374. [15]徐 光. 金属材料 CCT 曲线测定及绘制[M]. 北京: 化学工业出版社, 2009. [16]龙松朋, 周旭东, 李 汉. 42CrMoA 钢动态 CCT 曲线[J]. 热加工工艺, 2013, 42(2): 66-68. Long Songpeng, Zhou Xudong, Li Han. Dynamic continuous cooling transformation diagram of 42CrMoA steel[J]. Hot Making Technology, 2013, 42(2): 66-68. [17]Liu G W, Mao C L, Ding R, et al. The kinetics of dynamic recrystallization and construction of constitutive modeling of RAFM steel in the hot deformation process[J]. Journal of Nuclear Materials, 2021, 557: 153285. [18]张 宇, 刘仁东, 王科强, 等. 42CrMo钢动态CCT曲线及组织转变[J]. 金属热处理, 2012, 37(12): 37-40. Zhang Yu, Liu Rendong, Wang Keqiang, et al. Dynamic continuous cooling transformation curves and microstructure evolution of 42CrMo steel[J]. Heat Treatment of Metals, 2012, 37(12): 37-40. |