[1]Caballero F G, Allain S, Cornide J, et al. Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application[J]. Materials and Design, 2013, 49: 667-680. [2]Zhou Q, Qian L, Meng J, et al. The fatigue properties, microstructural evolution and crack behaviors of low-carbon carbide-free bainitic steel during low-cycle fatigue[J]. Materials Science and Engineering A, 2021, 820: 141571. [3]Gao G, Liu R, Wang K, et al. Role of retained austenite with different morphologies on sub-surface fatigue crack initiation in advanced bainitic steels[J]. Scripta Materialia, 2020, 184: 12-18. [4]Ding R, Tang D, Zhao A. A novel design to enhance the amount of retained austenite and mechanical properties in low-alloyed steel[J]. Scripta Materialia, 2014, 88: 21-24. [5]Zhao X, Zhang F, Yang Z, et al. Cyclic deformation behavior and microstructure evolution of high-carbon nano-bainitic steel at different tempering temperatures[J]. Materials Science and Engineering A, 2019, 751: 323-331. [6]Zhao L, Qian L, Zhou Q, et al. The combining effects ofausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel[J]. Materials and Design, 2019, 183: 108-123. [7]Zhou Q, Qian L, Qin F, et al. Reverse loading-rate sensitivity of tensile fracture energy of smooth and pre-cracked specimens of carbide-free bainitic steel[J]. Scripta Materialia, 2022, 218: 114844. [8]Shen Y F, Qiu L N, Sun X, et al. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels[J]. Materials Science and Engineering A, 2015, 636: 551-564. [9]Zhou Q, Qian L, Tan J, et al. Inconsistent effects of mechanical stability of retained austenite on ductility and toughness of transformation-induced plasticity steels[J]. Materials Science and Engineering A, 2013, 578: 370-376. [10]Long X, Zhao G, Zhang F, et al. Evolution of tensile properties with transformation temperature in medium-carbon carbide-free bainitic steel[J]. Materials Science and Engineering A, 2020, 775: 138964. [11]Zhao J, Lü B, Zhang F, et al. Effects of austempering temperature on bainitic microstructure and mechanical properties of a high-C high-Si steel[J]. Materials Science and Engineering A, 2019, 742: 179-189. [12]Wang E, He Q, Gu C, et al. Effect of austempering temperature on microstructure evolution, mechanical properties and wear resistance of carbon-free nano-bainite steel[J]. Journal of Materials Research and Technology, 2023, 26: 6703-6718. [13]孙 林, 洪振军, 胡 坤, 等. 回火温度对不同淬火处理0.6C超级贝氏体钢组织及性能的影响[J]. 金属热处理, 2020, 45(10): 54-59. Sun Lin, Hong Zhenjun, Hu Kun, et al. Effect of tempering temperature on microstructure and properties of 0.6C super bainitic steel quenched by different methods[J]. Heat Treatment of Metals, 2020, 45(10): 54-59. [14]Yang H S, Bhadeshia H K D H. Uncertainties in dilatometric determination of martensite start temperature[J]. Materials Science and Technology, 2007, 23(5): 556-560. [15]Caballero F G, Bhadeshia H K D H. Very strong bainite[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3/4): 251-257. [16]尹云洋, 杨王玥, 李龙飞, 等. Al部分替代Si对基于动态相变热轧TRIP钢组织控制的影响[J]. 金属学报, 2008, 44(11): 1292-1298. Yin Yunyang, Yang Wangyue, Li Longfei, et al. Influence of the partial substitution of Si by Al on the microstructure of the hot rolling TRIP steels based on dynamic transformation of undercooled austenite[J]. Acta Metallurgica Sinica, 2008, 44(11): 1292-1298. [17]Xu Y, Zhang S H, Cheng M, et al. In situ X-ray diffraction study of martensitic transformation in austenitic stainless steel during cyclic tensile loading and unloading[J]. Scripta Materialia, 2012, 67(9): 771-774. [18]Dyson D J, Holmes B. Effect of alloying additions on the lattice parameter of austenite[J]. Journal of the Iron and Steel Institute, 1970, 208: 469-474. |