[1]Kang J R. Global attractor for suspension bridge equations with memory[J]. Mathematical Methods in the Applied Sciences, 2016, 39(4): 762-775. [2]蒋振雄. 超大跨径缆索承重桥梁新型结构体系研究与实践[J]. 江苏建筑, 2024(2): 1-9. Jiang Zhenxiong. Research and practice on new structural system of super long span cable bearing bridge[J]. Jiangsu Architecture, 2024(2): 1-9. [3]Tarui T, Nishida S, Yoshie A. Wire rod for 2000 MPa galvanized wire and 2300 MPa PC strand[J]. Nippon Steel Technical Report, 1999, 80: 44-49. [4]王 雷, 李月云, 胡 磊, 等. 6.0 mm 2060 MPa级桥梁缆索镀锌铝钢丝用盘条的研制[J]. 金属材料与冶金工程, 2019, 47(5): 9-15. Wang Lei, Li Yueyun, Hu Lei, et al. Development of wire rod for 6.0 mm 2060 MPa bridge cable galvanized aluminum steel wire[J]. Metal Materials and Metallurgical Engineering, 2019, 47(5): 9-15. [5]刘 澄, 徐恭义, 陈华青, 等. 1960 MPa级桥梁缆索镀锌钢丝用离线盐浴处理(QWTP)盘条[Z]. 2016. Liu Cheng, Xu Gongyi, Chen Huaqing, et al. Off-line salt bath treated (QWTP) wire rod for 1960 MPa grade galvanized steel wire for bridge cables[Z]. 2016. [6]母俊莉, 姚 赞, 江晨鸣. 2000 MPa级斜拉桥用高强度钢丝开发[J]. 金属制品, 2020, 46(5): 10-14. Mu Junli, Yao Zan, Jiang Chenming. Development of high strength steel wire for 2000 MPa grade cable-stayed bridge[J]. Metal Products, 2020, 46(5): 10-14. [7]王林烽, 周立初, 陈华青, 等. φ5.35 mm-2100 MPa桥梁用锌铝钢丝的工艺与组织性能[J]. 钢铁, 2019, 54(2): 90-96. Wang Linfeng, Zhou Lichu, Chen Huaqing, et al. Manufacturing technology, microstructural and mechanical properties of φ5.35 mm-2100 MPa grade hot galvalume steel wire for bridge cable[J]. Iron and Steel, 2019, 54(2): 90-96. [8]王仁贵, 沈锐利, 魏乐永, 等. 主跨2300 m悬索桥自平衡体系及其力学特性研究[J]. 公路, 2023, 68(6): 14-20. Wang Rengui, Shen Ruili, Wei Leyong, et al. Study on self-balanced system and its mechanical characteristics of suspension bridge with main span of 2300 m[J]. Highway, 2023, 68(6): 14-20. [9]Huang J B F S. Effect of controlled cold air distribution on temperature profile and phase transformation of wire loops in the Stelmor air-cooling process[J]. Applied Thermal Engineering, 2018, 143: 340-349. [10]Hwang J K. Effects of nozzle shape and arrangement on the cooling performance of steel wire rod in the Stelmor cooling process[J]. Applied Thermal Engineering, 2020, 164: 114461. [11]Yu W H, Chen S H, Kuang Y H, et al. Development and application of online Stelmor controlled cooling system[J]. Applied Thermal Engineering, 2009, 29(14/15): 2949-2953. [12]Bargujer S S, Suri N M, Belokar R M. Pearlitic steel wire: High carbon steel based natural nanomaterial by lead patenting process[J]. Materials Today: Proceedings, 2016, 3(6): 1553-1562. [13]冯路路, 吴开明, 鲁修宇, 等. 桥梁缆索用超高强度钢丝的研究现状及发展趋势[J]. 中国材料进展, 2020, 39(5): 395-403. Feng Lulu, Wu Kaiming, Lu Xiuyu, et al. Research status and development trend of ultra-high strength steel wire for bridge cable[J]. Progress in Materials in China, 2020, 39(5): 395-403. [14]Ohba H, Nishida S, Tarui T, et al. High-performance wire rods produced with DLP[J]. Nippon Steel Technical Report, 2007, 96: 50-56. [15]刘 澄, 朱 帅, 李 阳, 等. 环保型高强度桥梁缆索用盘条工业化热处理工艺的研发[C]//第十一届中国钢铁年会, 2017: 963-966. [16]徐 红, 陆 毅, 谢学锋. 水浴与铅浴钢丝组织与性能对比研究[J]. 现代冶金, 2020, 48(2): 39-41. Xu Hong, Lu Yi, Xie Xuefeng. Comparative study on microstructure and properties of water bath and lead bath steel wire[J]. Modern Metallurgy, 2020, 48(2): 39-41. [17]郭 宁, 栾佰峰, 周 正, 等. 不同热处理工艺盘条微观组织及力学性能分析[J]. 材料热处理学报, 2012, 33(4): 44-49. Guo Ning, Luan Baifeng, Zhou Zheng, et al. Microstructure and mechanical properties of steel wire rods by different heat treatment[J]. Transactions of Materials and Heat Treatment, 2012, 33(4): 44-49. [18]陈 锐, 罗新民. 高碳钢钢丝在铅浴和CMC水溶液中的冷却行为[J]. 热加工工艺, 2006, 35(12): 29-32. Chen Rui, Luo Xinmin. Cooling behaviors of high carbon steel wires in patenting and CMC solutions[J]. Hot Working Technology, 2006, 35(12): 29-32. [19]Rao K M P, Prabhu N K. Effect of bath temperature on cooling performance of molten eutectic NaNO3-KNO3 quench medium for martempering of steels[J]. Metallurgical and Materials Transactions A, 2017, 48(10): 4895-4904. [20]Rao K M P, Prabhu K N. Compositional and bath temperature effects on heat transfer during quenching in molten NaNO3-KNO3 salt mixtures[J]. Journal of Materials Engineering and Performance, 2020, 29(3): 1860-1868. [21]胡 磊, 王 雷. 大规格SWRH82B盘条面缩性能影响因素[J]. 金属热处理, 2018, 43(3): 221-225. Hu Lei, Wang Lei. Affecting factors on area reduction of large-size SWRH82B steel wire rod[J]. Heat Treatment of Metals, 2018, 43(3): 221-225. [22]Fujisawa T, Hamada S, Koga N, et al. Proposal for an engineering definition of a fatigue crack initiation unit for evaluating the fatigue limit on the basis of crystallographic analysis of pearlitic steel[J]. International Journal of Fracture, 2014, 185(1): 17-29. [23]瞿 熙, 鲍思前, 赵 刚, 等. 高碳钢丝拉拔过程中的组织性能演变[J]. 材料科学与工程学报, 2021, 39(6): 937-942. Qu Xi, Bao Siqian, Zhao Gang, et al. Evolution of microstructure and properties for high carbon steel wire during drawing[J]. Journal of Materials Science and Engineering, 2021, 39(6): 937-942. |