[1]Karakose E, Keskin M. Microstructure evolution and mechanical properties of intermetallic Ni-xSi(x=5, 10, 15, 20) alloys[J]. Journal of Alloys and Compounds, 2012, 528: 63-69. [2]Pollock T M, Tin S. Nickel-based superalloys for advanced turbine Engines: Chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2): 361-374. [3]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [4]Sreeramagiri P, Alrehaili H, Wu X, et al. Comparison of laser deposition methods for the synthesis of AlxCoCrFeNi multi-principal element alloy[J]. Journal of Materials Research and Technology, 2022, 19: 1090-1101. [5]Roy A, Devanathan R, Johnson D D, et al. Grain-size effects on the deformation in nanocrystalline multi-principal element alloy[J]. Materials Chemistry and Physics, 2022, 277: 125546. [6]Rodrigues J F Q, Coluci V R, Grosso M F, et al. Modeling and characterization of MoNbTiW refractory multi-principal element alloy[J]. Journal of Alloys and Compounds, 2022, 928: 167062. [7]Daoud H M, Manzoni A M, Wanderka N, et al. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy)[J]. JOM, 2015, 67(10): 2271-2277. [8]Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 375-377: 213-218. [9]Sathiaraj G D, Ahmed M Z, Bhattacharjee P P. Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys[J]. Journal of Alloys and Compounds, 2016, 664(15): 109-119. [10]Laplanche G, Gadaud P, Horst O, et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy[J]. Journal of Alloys and Compounds, 2015, 623: 348-353. [11]Tong Y, Chen D, Han B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures[J]. Acta Materialia, 2019, 165: 228-240. [12]翟逸玥, 寇生中, 杨慧妮. AlxCrFeNiMn高熵合金的组织和性能[J]. 金属热处理, 2019, 44(7): 144-149. Zhai Yiyue, Kou Shengzhong, Yang Huini. Microstructure and properties of AlxCrFeNiMn high entropy alloys[J]. Heat Treatment of Metals, 2019, 44(7): 144-149. [13]魏仕勇, 王超敏, 彭文屹, 等. Al添加量对无钴高熵合金涂层组织结构和耐磨性的影响[J]. 金属热处理, 2023, 48(11): 276-281. Wei Shiyong, Wang Chaomin, Peng Wenyi, et al. Effect of Al addition on microstructure and wear resistance of Co-free high-entropy alloy coatings[J]. Heat Treatment of Metals, 2023, 48(11): 276-281. [14]李荣斌, 张 霞, 蒋春霞. VNbMoTaWCo高熵合金氮化物扩散阻挡层的制备及其热稳定性[J]. 金属热处理, 2022, 47(6): 196-201. Li Rongbin, Zhang Xia, Jiang Chunxia. Preparation and thermal stability of VNbMoTaWCo-nitride diffusion barrier layer[J]. Heat Treatment of Metals, 2022, 47(6): 196-201. [15]Shao L L, Xue L, Luo Q, et al. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation[J]. Journal of Materials Science and Technology, 2022, 109: 147-156. [16]Bachani S K, Wang C J, Lou B S, et al. Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics[J]. Journal of Alloys and Compounds, 2021, 873: 159605. [17]孙德福, 孙智程, 谷 臻, 等. 机械合金化时间对Ni6Cr4W1.5Fe9Ti高熵合金激光熔覆涂层组织与耐蚀性的影响[J]. 金属热处理, 2023, 48(3): 1-7. Sun Defu, Sun Zhicheng, Gu Zhen, et al. Effect of mechanical alloying time on microstructure and corrosion resistance of laser clad coating of Ni6Cr4W1.5Fe9Ti high-entropy alloy[J]. Heat Treatment of Metals, 2023, 48(3): 1-7. [18]Li T X, Miao J W, Guo E Y, et al. Tungsten-containing high-entropy alloys: A focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties[J]. Tungsten, 2021, 3(2): 181-196. [19]Tsai M H, Yeh J W. High-entropy alloys: A critical review[J]. Materials Research Letters, 2014, 2(3): 107-123. [20]Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Materialia, 2013, 61(7): 2628-2638. [21]Tsai M H. Physical properties of high entropy alloys[J]. Entropy, 2013, 15(12): 5338-5345. [22]Oh H S, Ma D C, Leyson G P, et al. Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment[J]. Entropy, 2016, 18(9): 321. [23]Varvenne C, Luque A, Curtin W A. Theory of strengthening in fcc high entropy alloys[J]. Acta Materialia, 2016, 118: 164-176. [24]Okamoto N L, Yuge K, Tanaka K, et al. Atomic displacement in the CrMnFeCoNi high-entropy alloy—A scaling factor to predict solid solution strengthening[J]. AIP Advances, 2016, 6(12): 125008. [25]Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887-4897. [26]Singh S, Wanderka N, Murty B S, et al. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy[J]. Acta Materialia, 2011, 59(1): 182-190. [27]Chen Y Y, Duval T, Hong U T, et al. Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 ℃ high-purity water[J]. Materials Letters, 2007, 61(13): 2692-2696. [28]Ranganathan S. Alloyed pleasures: Multimetallic cocktails[J]. Current Science, 2003, 85(5): 1404-1406. [29]Bracq G, Laurent-Brocq M, Varvenne C, et al. Combining experiments and modeling to explore the solid solution strengthening of high and medium entropy alloys[J]. Acta Materialia, 2019, 177: 266-279. [30]Niu C N, LaRosa C R, Miao J S, et al. Magnetically-driven phase transformation strengthening in high entropy alloys[J]. Nature Communications, 2018, 9: 1363. [31]Ka W, Li C C, Cheng F P, et al. Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700-900 ℃[J]. Corrosion Science, 2017, 121: 116-125. [32]Tsao T K, Yeh A C, Kuo C M, et al. On the superior high temperature hardness of precipitation strengthened high entropy Ni-based alloys[J]. Advanced Engineering Materials, 2017, 19(1): 1600475. [33]Fu J X, Cao C M, Tong W, et al. The tensile properties and serrated flow behavior of a thermomechanically treated CoCrFeNiMn high-entropy alloy[J]. Materials Science and Engineering A, 2017, 690(6): 418-426. [34]Gali A, George E P. Tensile properties of high- and medium-entropy alloys[J]. Intermetallics, 2013, 39: 74-78. [35]Otto F, Dlouhy A, Somsen C H, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755. [36]Hong S I, Moon J, Hong S K, et al. Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy[J]. Materials Science and Engineering A, 2017, 682: 569-576. [37]Carroll R, Lee C, Tsai C W, et al. Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys[J]. Science Reports, 2015, 5: 16997. [38]Tsai C W, Lee C, Lin P T, et al. Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy[J]. International Journal of Plasticity, 2019, 122: 212-224. [39]Woo W, Huang E W, Yeh J W, et al. In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy[J]. Intermetallics, 2015, 62: 1-6. [40]Reddy S R, Bapari S, Bhattacharjee P P, et al. Superplastic-like flow in a fine-grained equiatomic CoCrFeMnNi high-entropy alloy[J]. Materials Research Letters, 2017, 5(6): 408-414.[41]Eleti R R, Bhattacharjee T, Zhao L J, et al. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy[J]. Materials Chemistry and Physics, 2018, 210: 176-186. [42]He J Y, Zhu C, Zhou D Q, et al. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures[J]. Intermetallics, 2014, 55: 9-14. [43]Zhang M, George E P, Gibeling J C. Tensile creep properties of a FeMnCoCrNi high-entropy alloy[J]. Scripta Materialia, 2021, 194: 113633. [44]Jo M G, Suh J Y, Kim M Y, et al. High temperature tensile and creep properties of FeMnCoCrNi and CrFeCoNi high-entropy alloys[J]. Materials Science and Engineering A, 2022, 838: 142748. [45]Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Materialia, 2014, 81: 428-441. [46]Sherby O D, Burke P M. Mechanical behavior of crystalline solids at elevated temperature[J]. Progress in Materials Science, 1968, 13: 323-390. [47]Weertman J. Steady-state creep through dislocation climb[J]. Journal of Applied Physics, 1957, 28(3): 362-364. [48]Cannon W R, Sherby O D. High temperature creep behavior of class I and class II solid solution alloys[J]. Metallurgical and Materials Transactions B, 1970, 1(4): 1030-1032. [49]Zhang M, George E P, Gibeling J C. Elevated-temperature deformation mechanisms in a FeMnCoCrNi high-entropy alloy[J]. Acta Materialia, 2021, 218(19): 117181. |