[1]McDermid J R, Zurob H S, Bian Y. Stability of retained austenite in high-Al, low-Si TRIP-assisted steels processed via continuous galvanizing heat treatments[J]. Metallurgical and Materials Transactions A, 2011, 42(12): 3627-3637. [2]Shibli S M A, Meena B N, Remya R. A review on recent approaches in the field of hot dip zinc galvanizing process [J]. Surface and Coatings Technology, 2015, 262: 210-215. [3]Liu H, Shi W, He Y, et al. The effect of alloy elements on selective oxidation and galvanizability of TRIP-aided steel[J]. Surface and Interface Analysis, 2010, 42(12/13): 1685-1689. [4]Kim Yunkyum, Shin Minsoo, Tang Chengying, et al. Wettability of MnxSiyOz by liquid Zn-Al alloys[J]. Metallurgical and Materials Transactions B, 2010, 41(4): 872-875. [5]Suzuki Y, Yamashita T, Sugimoto Y, et al. Thermodynamic analysis of selective oxidation behavior of Si and Mn-added steel during recrystallization annealing[J]. ISIJ international, 2009, 49(4): 564-573. [6]Abuluwefa H T. Thermodynamics and kinetics of surface oxidation of steels during annealing in H2-N2 atmospheres[C]//Proceedings of the International Multi Conference of Engineers and Computer Scientists. 2012: 2. [7]张 楠, 李 岩, 定 巍. 0.2C-5Mn-0.5Si-2.5Al中锰钢临界退火后的微观组织及力学性能[J]. 金属热处理, 2021, 46(7): 37-42. Zhang Nan, Li Yan, Ding Wei. Microstructure and mechanical properties of 0.2C-5Mn-0.5Si-2.5Al medium manganese steel after intercritical annealing[J]. Heat Treatment of Metals, 2021, 46(7): 37-42. [8]魏寿昆. 冶金过程热力学[M]. 北京: 科学出版社, 2010. [9]Kawano T, Renner F U. Tailoring model surface and wetting experiment for a fundamental understanding of hot-dip galvanizing[J]. ISIJ International, 2011, 51(10): 1703-1709. [10]Khondker R, Mertens A, McDermid J R. Effect of annealing atmosphere on the galvanizing behavior of a dual-phase steel[J]. Materials Science and Engineering A, 2007, 463(1/2): 157-165. [11]Bale C W, Chartrand P, Degterov S A, et al. FactSage thermochemical software and databases[J]. Calphad, 2002, 26(2): 189-228. [12]Kjellqvist L, Selleby M. Thermodynamic assessment of the Fe-Mn-O system[J]. Journal of Phase Equilibria and Diffusion, 2010, 31: 113-134. [13]Masanori S, Yusuke F, Yusuke O, et al. Wetting behavior of Zn-Al liquid on Si-containing steel after surface oxidation and reduction treatment[J]. Metallurgical and Materials Transactions B, 2020, 51(2): 467-479. [14]Zhou D, Dayuan Z, Mian L, et al. Insight into the law and mechanism of selective oxidation of Q&P steel under different annealing parameters[J]. Materials Research Express, 2020, 7(10): 106524. [15]Cho Lawrence, Jung Geun Su, Cooman C De Bruno. On the transition of internal to external selective oxidation on CMnSi TRIP steel[J]. Metallurgical and Materials Transactions A, 2014, 45(11): 5158-5172. [16]冯士杰, 江社明, 李远鹏, 等. 预氧化对第三代汽车钢热浸镀锌的影响[J]. 金属热处理, 2014, 39(4): 26-30. Feng Shijie, Jiang Sheming, Li Yuanpeng, et al. Influence of peroxidation on galvanizability of the third generation automotive steel[J]. Heat Treatment of Metals, 2014, 39(4): 26-30. [17]Liu H, He Y, Li L. Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing[J]. Applied Surface Science, 2009, 256(5): 1399-1403. [18]Wang Kun, Ding Yuwen, Liu Ya, et al. Experimental study and thermodynamic analysis on the selective oxidation of DP1180 dual-phase steel[J]. Surface and Interface Analysis, 2021, 54(2): 117-125. [19]任廷栋. 汽车用高锰钢选择性氧化对热浸镀锌性能影响的研究[D]. 上海: 上海大学, 2020. Ren Tingdong. Study on the effect of selective oxidation on hot dip galvanizing performance of high manganese steel for automotive applications[D]. Shanghai: Shanghai University, 2020. [20]Bhadhon K M H, McDermid J R. Selective oxidation of a medium-Mn third generation advanced high strength steel during austenitizing and intercritical annealing[J]. Journal of the Electrochemical Society, 2022, 169(6): 061504. |