[1]Daehn G S, Kum D W, Sherby O D. Superplasticity of a stainless steel clad ultrahigh carbon steel[J]. Metallurgical Transactions A, 1986, 17: 2295-2298. [2]杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(1): 201507. Yang Guowei, Wei Yujie, Zhao Guilin, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(1): 201507. [3]张凤国, 王 裴, 王言金, 等. 孔洞增长层裂模型的改进及其在模拟不同加载波形层裂实验结果方面的应用[J/OL]. 爆炸与冲击, 1-10[2024-03-02]. Zhang Fengguo, Wang Pei, Wang Yanjin, et al. Improvement of void growth model and its application in simulating spallation experiments under different impact loading wave forms[J/OL]. Explosion and Shock Waves, 1-10[2024-03-02]. [4]Hawkins M C, Thomas S, Hixson R, et al. Dynamic properties of FeCrMnNi, a high entropy alloy[J]. Materials Science Engineering A, 2022, 840: 142906. [5]Dang J Q, Wang C G, Wang H H, et al. Deformation behavior and microstructure evolution of 300M ultrahigh strength steel subjected to high strain rate: An analytical approach[J]. Journal of Materials Research and Technology, 2023, 831: 25812. [6]Liu M, Ren G, Fan C, et al. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder[J]. International Journal of Impact Engineering, 2017, 252: 109240. [7]Meyers M, Xu Y, Xue Q, et al. Microstructural evolution in adiabatic shear localization in stainless steel[J]. Acta Materialia, 2003, 51(5): 1307-1325. [8]胡 博, 郭亚洲, 魏秋明, 等. 绝热剪切变形中温升现象的研究进展[J]. 高压物理学报, 2021, 35(4): 97-124. Hu Bo, Guo Yazhou, Wei Qiuming, et al. Temperature rise during adiabatic shear deformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 97-124. [9]张艳君, 闵永安, 刘湘江, 等. GCr15轴承套圈组织分布特点及碳化物均匀性[J]. 金属热处理, 2019, 44(12): 6-12. Zhang Yanjun, Min Yongan, Liu Xiangjiang, et al. Microstructure distribution characteristics and carbide homogeneity of GCr15 bearing ring[J]. Heat Treatment of Metals, 2019, 44(12): 6-12. [10]袁新建, 李 慈, 汪浩东, 等. 钒、铬微合金化对高碳钢微观组织与力学性能的影响[J]. 材料导报, 2017, 31(8): 76-81. Yuan Xinjian, Li Ci, Wang Haodong, et al. Effects of micro-alloying of chromium and vanadium on microstructure and mechanical properties of high carbon steel[J]. Materials Reports, 2017, 31(8): 76-81. [11]孙曼丽, 江 波, 陈 刚, 等. Nb微合金化对高碳钢组织和性能的影响[J]. 金属热处理, 2016, 41(4): 71-74. Sun Manli, Jiang Bo, Chen Gang, et al. Effect of Nb microalloying on microstructure and mechanical properties of high carbon steel[J]. Heat Treatment of Metals, 2016, 41(4): 71-74. [12]王冬晨. 淬回火工艺及合金元素对高碳钢组织和力学性能的影响[D]. 北京: 钢铁研究总院, 2017. [13]闫永明, 尉文超, 孙 挺, 等. GCr15SiMo钢的动态及高温力学行为[J]. 材料工程, 2022, 50(12): 112-119. Yan Yongming, Yu Wenchao, Sun Ting, et al. Dynamic and high temperature mechanical behavior of GCr15SiMo steel[J]. Journal of Materials Engineering, 2022, 50(12): 112-119. [14]Wang J, Guo W, Guo J, et al. The effects of stress triaxiality, temperature and strain rate on the fracture characteristics of a nickel-base superalloy[J]. Journal of Materials Engineering and Performance, 2016, 25(5): 2043-2052. [15]Li X Y, Zhang Z H, Cheng X W, et al. The evolution of adiabatic shear band in high Co-Ni steel during high strain-rate compression[J]. Materials Science and Engineering A, 2022, 858: 144173. [16]袁伍丰. 高碳硅锰钢动态力学及其绝热剪切性能研究[D]. 武汉: 武汉科技大学, 2020. [17]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [18]刘旭红, 黄西成, 陈裕泽, 等. 强动载荷下金属材料塑性变形本构模型评述[J]. 力学进展, 2007, 37(3): 361-374. Liu Xuhong, Huang Xicheng, Chen Yuze, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading[J]. Advances in Mechanics, 2007, 37(3): 361-374. |