[1]Guo Y J, Li J F, Lu D D, et al. Characterization of Al3Zr precipitation via double-step homogenization and recrystallization behavior after subsequent deformation in 2195 Al-Li alloy[J]. Materials Characterization, 2021, 182: 111549. [2]李劲风, 李昊然, 王正安. 铝锂合金组织-性能相关性及新型铝锂合金设计[J]. 中国材料进展, 2022, 41(10): 796-807. Li Jingfeng, Li Haoran, Wang Zheng'an. Correlations between properties and structures of Al-Li alloys and novel alloy design[J]. Materials China, 2022, 41(10): 796-807. [3]Chen F, Zhan L H, Gao T J, et al. Creep aging properties variation and microstructure evolution for 2195 Al-Li alloys with various loading rates[J]. Materials Science and Engineering A, 2021, 827(19): 142055. [4]Xu Y, Guo X, Zhang S H, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review[J]. Journal of Advanced Research, 2018, 10: 49-67. [5]Nayan N, Narayana M, Chhangani S, et al. Effect of temperature and strain rate on hot deformation behavior and microstructure of Al-Cu-Li alloy[J]. Journal of Alloys and Compounds, 2017, 723: 548-558. [6]Lu D D, Wang G, Li J F, et al. Effect of grain structure and precipitate on tensile properties and low-cycle fatigue behaviors of 2A55 Al-Cu-Li alloy[J]. International Journal of Fatigue, 2022, 159: 106834. [7]Wu W, Liu Z, Bai S, et al. Anisotropy in fatigue crack propagation behavior of Al-Cu-Li alloy thick plate[J]. Materials Characterization, 2017, 131: 440-449. [8]Yu J, Lu Z, Xiong Y C, et al. Effect of intermediate thermomechanical treatment on microstructure and mechanical properties of 2A97 Al-Li alloy[J]. Materials Science Forum, 2019, 960: 70-77. [9]Dorin T, Deschamps A, Geuser F, et al. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy[J]. Acta Materialia, 2014, 75: 134-146. [10]Wu P, Deng Y, Zhang J, et al. The effect of inhomogeneous microstructures on strength and fatigue properties of an Al-Cu-Li thick plate[J]. Materials Science and Engineering A, 2018, 731: 1-11. [11]De P S, Mishra R S, Baumann J A. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy[J]. Acta Materialia, 2011, 59(15): 5946-5960. [12]Rodgers B I, Prangnell P B. Quantification of the influence of increased prestretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195[J]. Acta Materials, 2016, 108: 55-67. [13]Zhang Q, Zhang C, Lin J, et al. Microstructure analysis and low-cycle fatigue behavior of spray-formed Al-Li alloy 2195 extruded plate[J]. Materials Science and Engineering A, 2019, 742(10): 773-787. [14]Rao R, Venkateswara K T, Yu W, et al. On the behavior of small fatigue cracks in commercial aluminum-lithium alloys[J]. Engineering Fracture Mechanics, 1987, 31(4): 623-635. [15]Cisko A R, Jordon J B, Avery D Z, et al. Characterization of fatigue behavior of Al-Li alloy 2099[J]. Materials Characterization, 2019, 151: 496-505. [16]Jiang T, Jiao T, Dai G Q, et al. Microstructure evolution and mechanical properties of 2060 Al-Li alloy via friction stir additive manufacturing[J]. Journal of Alloys and Compounds, 2023, 935(2): 168019. [17]武 强, 姜仁杰, 李新桐, 等. 2060铝锂合金光纤激光焦点旋转填丝焊工艺研究[J]. 中国激光, 2021, 48(22): 122-131. Wu Qiang, Jiang Renjie. Li Xintong, et al. Fiber laser filler wire welding of 2060 aluminum-lithium alloy with laser focus rotation[J]. Chinese Journal of Lasers, 2021, 48(22): 122-131. [18]于以标, 陈乐平, 徐 勇, 等. 2060-T8E30铝锂合金的热变形行为及本构模型[J]. 稀有金属材料与工程, 2021, 50(12): 4388-4394. Yu Yibiao, Chen Leping, Xu Yong, et al. Hot deformation behavior and constitutive model of 2060-T8E30 Al-Li alloy[J]. Rare Metal Materials and Engineering, 2021, 50(12): 4388-4394. [19]Dong F, Huang S, Yi Y, et al. Effect of increased stretching deformation at cryogenic temperature on the precipitation behavior and mechanical properties of 2060 Al-Li alloy[J]. Materials Science and Engineering A, 2022, 834: 142585. [20]郑子樵, 李劲风, 陈志国, 等. 铝锂合金的合金化与微观组织演化[J]. 中国有色金属学报, 2011, 21(10): 2337-2351. Zheng Ziqiao, Li Jinfeng, Chen Zhiguo, et al. Alloying and microstructural evolution of Al-Li alloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2337-2351. [21]Kumar K S, Brown S A, Pickens J R. Microstructural evolution during aging of an Al-Cu-Li-Ag-Mg-Zr alloy[J]. Acta Materialia, 1996, 44(5): 1899-1915. [22]Howe J M, Lee J, Vasudevan A K. Structure and deformation behavior of T1 precipitate plates in an Al-2Li-1Cu alloy[J]. Metallurgical and Materials Transactions A, 1988, 19(12): 2911-2920. [23]Zhang S F, Zeng W D, Yang W H, et al. Ageing response of a Al-Cu-Li 2198 alloy[J]. Materials and Design, 2014, 63: 368-374. [24]Nie J F, Muddle B C. Microstructural design of high-strength aluminum alloys[J]. Journal of Phase Equilibria, 1998, 19(6): 543-551. [25]Hirosawa S, Sato T, Kamio A. Effects of Mg addition on the kinetics of low-temperature precipitation in Al-Li-Cu-Ag-Zr alloys[J]. Materials Science and Engineering A, 1998, 242: 195-201. [26]Blankenship C P, Starke E A. The fatigue crack growth behavior of the Al-Cu-Li alloy Weldalite 049[J]. Fatigue and Fracture of Engineering Materials and Structures, 1991, 14(1): 103-114. [27]Hornbogen E, Gahr K H Z. Microstructure and fatigue crack growth in a γ-Fe-Ni-Al alloy[J]. Acta Metallurgica, 1976, 24(6): 581-592. [28]Lin F S, StarkeJr E A. The effect of copper content and degree of recrystallization on the fatigue resistance of 7××× type aluminum alloys I. Low cycle corrosion fatigue[J]. Materials Science and Engineering, 1979, 39(1): 27-41. [29]Suresh S. Fatigue crack deflection and fracture surface contact: Micromechanical models[J]. Metallurgical and Materials Transactions A, 1985, 14: 2375-2385. [30]Deschamps A, Decreus B, De Geuser F, et al. The influence of precipitation on plastic deformation of Al-Cu-Li alloys[J]. Acta Materialia, 2013, 61(11): 4010-4021. [31]Dorin T, De Geuser F, Lefebvre W, et al. Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al-Cu-Li alloy[J]. Materials Science and Engineering A, 2014, 605: 119-126. |