[1] 宋志刚, 丰 涵, 吴晓涵, 等. 中国双相不锈钢的发展及研究进展[J]. 中国冶金, 2022, 32(6): 2-14. Song Zhigang, Feng Han, Wu Xiaohan, et al. Development and research progress of duplex stainless steel in China[J]. China Metallurgy, 2022, 32(6): 2-14. [2] Byrne G. Duplex stainless steels-Alloys for the 21st century[J]. Metals, 2021, 11(5): 836. [3] Xiao Q, Kim C, Jang C, et al. On the feasibility of duplex stainless steel 2205 as an accident tolerant fuel cladding material for light water reactors[J]. Journal of Nuclear Materials, 2021, 557: 153265. [4] Xu H J, Hu W Q, Kang C, et al. Microstructural evolution and hot deformation behavior of lean duplex stainless steel 2101[J]. ISIJ International, 2021, 61(3): 967-974. [5] 李志国. TRIP型Cr19双相不锈钢的时效析出行为及其对性能的影响[D]. 秦皇岛: 燕山大学, 2023. [6] 汤瑞瑞, 龚利华. 节镍型双相不锈钢的研究进展[J]. 全面腐蚀控制, 2013, 27(1): 8-12. Tang Ruirui, Gong Lihua. Research progress in low-nickel duplex stainless steel[J]. Total Corrosion Control, 2013, 27(1): 8-12. [7] Momeni A, Dehghani K. Hot working behavior of 2205 austenite-ferrite duplex stainless steel characterized by constitutive equations and processing maps[J]. Materials Science and Engineering A, 2011, 528(3): 1448-1454. [8] 何 婵, 邹德宁, 赵 洁, 等. 2507超级双相不锈钢的流变应力本构关系及热加工图[J]. 金属热处理, 2022, 47(1): 94-99. He Chan, Zou Dening, Zhao Jie, et al. Flow stress constitutive relationship and processing map of super duplex stainless steel 2507[J]. Heat Treatment of Metals, 2022, 47(1): 94-99. [9] Farahat A I Z, Hamed O, El-Sisi A, et al. Effect of hot forging and Mn content on austenitic stainless steel containing high carbon[J]. Materials Science and Engineering A, 2011, 530(1): 98-106. [10] 李龙飞, 杨王玥, 孙祖庆. Mn含量对低碳钢中铁素体动态再结晶的影响[J]. 金属学报, 2004(12): 1257-1263. Li Longfei, Yang Wangyue, Sun Zuqing. Influence of Mn content on dynamic recrystallization of ferrite in low carbon steels[J]. Acta Metallurgica Sinica, 2004(12): 1257-1263. [11] Zhao Y, Li X, Zhang W N, et al. Strain partitioning and softening mechanisms of δ/γ in lean duplex stainless steels during hot deformation[J]. Steel Research International, 2020, 91(1): 1900212. [12] 苏煜森. Mn对23%Cr节Ni型双相不锈钢的高温热变形行为影响研究[D]. 昆明: 昆明理工大学, 2018. [13] 周荣锋, 杨王玥, 孙祖庆. 不同Mn含量低碳钢过冷奥氏体形变过程中的铁素体相变[J]. 金属学报, 2004(1): 1-7. Zhou Rongfeng, Yang Wangyue, Sun Zuqing. Ferrite transformation during deformation of undercooled austenite in low carbon steels with different Mn contents[J]. Acta Metallurgica Sinica, 2004(1): 1-7. [14] 陆世英. 超级不锈钢和高镍耐蚀合金[M]. 北京: 化学工业出版社, 2012. [15] 吕杰晟, 宋志刚, 何建国, 等. 固溶温度对17Cr-1Ni-3Mn-0.12N经济型不锈钢组织及力学性能影响[J]. 中国冶金, 2023, 33(5): 71-77. Lü Jiesheng, Song Zhigang, He Jianguo, et al. Effect of solution temperature on microstructure and mechanical properties of 17Cr-1Ni-3Mn-0.12N lean stainless steel[J]. China Metallurgy, 2023, 33(5): 71-77. [16] Estrin Y,Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models[J]. Acta Metallurgica, 1984, 32(1): 57-70. [17] 曾泽瑶, 杨银辉, 曹建春, 等. 18Cr-3Mn-1Ni-0.2N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169, 18189. Zeng Zeyao, Yang Yinhui, Cao Jianchun, et al. Study on the hot compression recrystallization behavior of 18Cr-3Mn-1Ni-0.2N low nickel type duplex stainless steel[J]. Materials Reports, 2021, 35(18): 18163-18169, 18189. [18] 师先哲, 杜诗文, 陈双梅. 基于热加工图的中碳钢加工性能分析[J]. 钢铁研究学报, 2019, 31(1): 31-39. Shi Xianzhe, Du Shiwen, Chen Shuangmei. Processing properties analysis of medium carbon steel based on hot processing map[J]. Journal of Iron and Steel Research, 2019, 31(1): 31-39. |