[1] 李冠兴, 周邦新, 肖 岷. 中国新一代核能核燃料总体发展战略研究[J]. 中国工程科学, 2019, 21(1): 6-11. Li Guanxing, Zhou Bangxin, Xiao Min, et al. Overall development strategy of China's new-generation nuclear fuel[J]. Chinese Engineering Science, 2019, 21(1): 6-11. [2] Beausoleil G L, Cinbiz M N, Yao T, et al. U-50Zr microstructure and property assessment for LWR applications[R]. Idaho National Laboratory, 2021. [3] Akabori M, Ogawa T, Itoh A, et al. The lattice stability and structure of δ-UZr2 at elevated temperatures[J]. Journal of Physics Condensed Matter, 1999, 7(43): 8249-8257. [4] Raj S B. Light water reactor(LWR) safety[J]. Nuclear Engineering and Technology, 2006, 38(8): 697-732. [5] Huber Z F, Conte E R, Lavender C A, et al. Casting and Characterization of U-50Zr[R]. Pacific Northwest National Laboratory, 2023. [6] Eichel D. Atomic diffusion in the uranium-50% zirconium nuclear fuel system[D]. Texas: Texas A&M University, 2013. [7] 李 宁, 王传奇, 孙振淋, 等. 超低碳微合金钢的热变形行为及本构方程[J/OL]. 热加工工艺, 2023, DOI: 10.14158/j.cnki.1001-3814.20222470. Li Ning, Wang Chuanqi, Sun Zhenlin, et al. Hot deformation behavior and constitutive equation of an ultralow-carbon mircroalloyed steel[J/OL]. Hot Wording Technology, 2023, DOI: 10.14158/j.cnki.1001-3814.20222470. [8] 周家林, 唐 力, 任 勇, 等. 超低碳Nb-V-Ti微合金钢热变形行为的研究[J]. 特殊钢, 2005, 26(3): 15-18. Zhou Jialin, Tang Li, Ren Yong, et al. A study on behavior of hot deformation of ultra-low carbon Nb-V-Ti microalloyed steel[J]. Special Steel, 2005, 26(3): 15-18. [9] 陆运杰, 梁 能, 吴 率, 等. 低碳马氏体不锈钢热变形行为及本构方程[J]. 金属功能材料, 2023, 30(3): 41-49. Lu Yunjie, Liang Neng, Wu Shuai, et al. Hot deformation behavior and constitutive equation of low-carbon martensitic stainless steel[J]. Metallic Functional Materials, 2023, 30(3) : 41-49. [10] 张雪敏, 曹福洋, 岳红彦, 等. TC11钛合金热变形本构方程的建立[J]. 稀有金属材料与工程, 2013, 42(5): 937-941. Zhang Xuemin, Cao Fuyang, Yue Hongyan, et al. Establishment of constitutive equations of TC11 alloy during hot deformation[J]. Rare Metal Materials and Engineering, 2013, 42(5): 937-941. [11] Dai Qingsong, Deng Yunlai, Tang Jianguo, et al. Deformation characteristics and strain-compensated constitutive equation for AA5083 aluminum alloy under hot compression[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2252-2261. [12] 田 伟, 李红斌, 徐树成, 等. 基于Gleeble快速压缩试验构建材料本构方程[C] //2014年第七届中国金属学会青年学术年会论文集. 2014: 88-91.Tian Wei, Li Hongbin, Xu Shucheng, et al. Construction of material's constitutive equation based on gleeble fast compression test[C] //Proceedings of the 7th Annual Youth Academic Conference of China Metallurgy Society in 2014. 2014: 88-91. [13] 伦建伟, 刘 伟, 杨 洋, 等. 35CrMoV钢高温塑性变形行为及其本构方程建立[J]. 锻压技术, 2021, 46(3): 216-220. Lun Jianwei, Liu Wei, Yang Yang, et al. High temperature plastic deformation behavior and constitutive equation establishment of 35CrMoV steel[J]. Forging Technology, 2021, 46(3): 216-220. [14] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. [15] 姚志浩, 董建新, 张麦仓, 等. GH738高温合金热加工行为[J]. 稀有金属材料与工程, 2013, 42(6): 1199-1204. Yao Zhihao, Dong Jianxin, Zhang Maicang, et al. Hot deformation behaviour of superalloy GH738[J]. Rare Metal Materials and Engineering, 2013, 42(6): 1199-1204. |