[1] Tomita Y, Okabayashi K. Effect of microstructure on strength and toughness of heat-treated low alloy structural steels[J]. Metallurgical Transactions A, 1986, 17(7): 1203-1209. [2] 邓灿明. 低碳马氏体钢强韧性晶粒控制单元的研究[D]. 昆明: 昆明理工大学, 2013. [3] 杨 明. 低碳马氏体钢多层次组织对疲劳损伤行为的影响机制研究[D]. 昆明: 昆明理工大学, 2019. [4] Sun C, Fu P, Liu H, et al. The effect of lath martensite microstructures on the strength of medium-carbon low-alloy steel[J]. Crystals, 2020, 10(3): 232. [5] 周 宇, 钱丽华, 刘天宇, 等. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 154-158. Zhou Yu, Qian Lihua, Liu Tianyu, et al. Microstructure and mechanical properties of lath martensite after cold rolling[J]. Materials Reports, 2020, 34(8): 154-158. [6] Kaijalainen A J, Suikkanen P P, Limnell T J, et al. Effect of austenite grain structure on the strength and toughness of direct-quenched martensite[J]. Journal of Alloys and Compounds, 2013, 577(7): 642-648. [7] Kumar A S, Kumar B R, Datta G L, et al. Effect of microstructure and grain size on the fracture toughness of a micro-alloyed steel[J]. Materials Science and Engineering A, 2010, 527(4/5): 954-960. [8] Wood W E. Effect of heat treatment on the fracture toughness of low alloy steels[J]. Engineering Fracture Mechanics, 1975, 7(2): 219-228. [9] Wang C, Wang M, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scripta Materialia, 2008, 58(6): 492-495. [10] 王之香. Nb对重载齿轮用20CrNi2Mo钢组织和力学性能的影响[J]. 金属热处理, 2013, 38(6): 46-48. Wang Zhixiang. Effects of Nb on microstructure and mechanical properties of 20CrNi2Mo heavy-duty gear steel[J]. Heat Treatment of Metals, 2013, 38(6): 46-48. [11] 卢叶茂, 梁益龙, 龙绍檑, 等. 马氏体板条控制单元对20CrNi2Mo钢韧性的影响[J]. 材料研究学报, 2018, 32(4): 290-300. Lu Yemao, Liang Yilong, Long Shaolei, et al. Effect of the martensite lath on toughness of 20CrNi2Mo steel[J]. Chinese Journal of Materials Research, 2018, 32(4): 290-300. [12] 付 明, 王智勇. 渗碳淬回火工艺对G20CrNi2Mo钢组织与性能的影响[J]. 金属热处理, 2020, 45(4): 166-170. Fu Ming, Wang Zhiyong. Effect of carburizing quenching and tempering process on microstructure and properties of G20CrNi2Mo steel[J]. Heat Treatment of Metals, 2020, 45(4): 166-170. [13] 黄 源, 卫英慧. 20CrMnTi钢TiC的析出行为与奥氏体晶粒度及钢的淬透性[J]. 金属热处理学报, 1993, 14(1): 20-24. Huang Yuan, Wei Yinghui. Influence of precipitation behaviour of TiC phase on austenite grain size and hardenability in 20CrMnTi steel[J]. Transactions of Metal Heat Treatment, 1993, 14(1): 20-24. [14] Long S, Liang Y, Jiang Y, et al. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel[J]. Materials Science and Engineering A, 2016, 676: 38-47. [15] Liang Y, Long S, Xu P, et al. The important role of martensite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel[J]. Materials Science and Engineering A, 2017, 695: 154-164. [16] 徐平伟, 梁益龙, 黄朝文. 奥氏体晶粒对52CrMoV4弹簧钢强韧性的影响[J]. 材料热处理学报, 2012, 33(1): 89-93. Xu Pingwei, Liang Yilong, Huang Chaowen. Effect of austenite grain on the strength and toughness of a spring steel 52CrMoV4[J]. Transactions of Materials and Heat Treatment, 2012, 33(1) : 89-93. [17] Liang Yilong, Lei Min. Relationship between fracture toughness and notch toughness tensile plasticity of slatted martensitic steels[J]. Acta Metallurgica Sinica, 1998(9): 950-958. [18] Wang C, Wang M, Shi J, et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel[J]. Journal of Materials Science and Technology, 2007, 23(5): 659-664. [19] 罗志俊, 沈俊昶, 苏 航, 等. 10CrNi5MoV钢板条M/B组织亚单元对强韧性的影响[J]. 材料热处理学报, 2010, 31(10): 63-69. Luo Zhijun, Shen Junchang, Su Hang, et al. Effect of substructure on strength and toughness of lath martensite-bainite microstructure in a 10CrNi5MoV steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(10): 63-69. [20] Luo Zhijun, Shen Junchang, Su Hang, et al. Effect of substructure on toughness of lath martensite/bainite mixed structure in low-carbon steels[J]. Journal of Iron and Steel Research, International, 2010, 17(11): 40-48. [21] 曾新光. 轴承钢中TiN夹杂物析出的控制[J]. 北京科技大学学报, 2009, 31(S1): 145-149. Zeng Xinguang. Control of TiN mixture precipitation in bearing steel[J]. Journal of University of Science and Technology Beijing, 2009, 31(S1): 145-149. [22] 傅 杰, 朱 剑, 迪 林, 等. 微合金钢中TiN的析出规律研究[J]. 金属学报, 2000, 36(8): 801-804. Fu Jie, Zhu Jian, Di Lin, et al. Study on the precipitation behavior of TiN in the microalloyed steels[J]. Acta Metallurgica Sinica, 2000, 36(8): 801-804. [23] 杨 勇, 刘 浏, 崔京玉. 转炉生产20CrMnTi齿轮钢中夹杂物及相分析研究[J]. 钢铁, 2010, 45(10): 41-46. Yang Yong, Liu Liu, Cui Jingyu. Study on inclusions and phase analysis of BOF produced 20CrMnTi gear steel[J]. Iron and Steel, 2010, 45(10): 41-46. [24] 李 尧, 成国光, 鲁金龙, 等. 20CrMnTi齿轮钢中TiN夹杂物的特征与分布[J]. 中国冶金, 2020, 30(12): 28-34. Li Yao, Cheng Guoguang, Lu Jinlong, et al. Characteristics and distribution of TiN inclusions in 20CrMnTi gear steel[J]. China Metallurgy, 2020, 30(12): 28-34. [25] Yan W, Shan Y Y, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon micro-alloyed steels[J]. Metallurgical and Materials Transactions A, 2006, 37(7): 2147-2158. [26] Schaffer J P. The Science and Design of Engineering Materials[M]. New York: McGraw-Hill College, 1995. [27] 李晓刚, 郑修麟. 金属塑性断裂的微观模型[J]. 金属科学与工艺, 1987, 6(3): 65-73. Li Xiaogang, Zheng Xiulin. A microscopic model of metallic ductile fracture[J]. Metal Science and Technology, 1987, 6(3): 65-73. |