[1] 刘正东, 陈正宗, 包汉生, 等. 新一代马氏体耐热钢G115 研发及工程化[M]. 北京: 冶金工业出版社, 2020. [2] 王 倩, 王卫良, 刘 敏, 等. 超(超)临界燃煤发电技术发展与展望[J]. 热力发电, 2021, 50(2): 1-9. Wang Qian, Wang Weiliang, Liu Min, et al. Development and prospect of (ultra) supercritical coal-fired power generation technology[J]. Thermal Power Generation, 2021, 50(2): 1-9. [3] Brózda J. New generation creep-resistant steels, their weldability and properties of welded joints: T/P92 steel[J]. Welding International, 2005, 19(1): 5-13. [4] 赵洪伟, 刘 利. P92和G115在630 ℃超超临界电站机组管材选用分析[J]. 电力勘测设计, 2022(3): 6-11. Zhao Hongwei, Liu Li. Analysis of P92 and G115 in pipe material selecting for 630 ℃ ultra-supercritical power plant unit[J]. Electric Power Survey and Design, 2022(3): 6-11. [5] 刘正东, 陈正宗, 何西扣, 等. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548. Liu Zhengdong, Chen Zhengzong, He Xikou, et al. Systematical innovation of heat resistant materials used for 630-700 ℃ advanced ultra supercritical (A-USC) fossil fired boilers[J]. Acta Metallurgica Sinica, 2020, 56(4): 539-548. [6] 杨丽霞. 超超临界耐热钢G115中Cu的跨尺度表征及其成分—组织结构—性能相关性研究[D]. 北京: 钢铁研究总院, 2017. Yang Lixia. Multi-scale characterization of Cu and correlation study on composition-structure-properties of ultra supercritical heat resistant steel G115[D]. Beijing: Central Iron and Steel Research Institute, 2017. [7] 刘 震. 钨和硼元素对G115新型马氏体耐热钢组织与性能的影响[D]. 北京: 北京科技大学, 2019. Liu Zhen. Effect of tungsten and boron on microstructure and properties of G1l5 new martensitic heat resistant steel[D]. Beijing: University of Science and Technology Beijing, 2019. [8] Kondo M, Tabuchi M, Tsukamoto M, et al. Suppressing type IV failure via modification of heat affected zone microstructures using high boron content in 9Cr heat resistant steel welded joints[J]. Science and Technology of Welding and Joining, 2006, 11(2): 216-223. [9] Guo J, Xu X, Jepson M A E, et al. Influence of weld thermal cycle and post weld heat treatment on the microstructure of MarBN steel[J]. The International Journal of Pressure Vessels and Piping, 2019, 174: 13-24. [10] Matsunaga T, Hongo H, Tabuchi M, et al. Suppression of grain refinement in heat-affected zone of 9Cr-3W-3Co-VNb steels[J]. Materials Science and Engineering A, 2016, 655: 168-174. [11] Liu L, Yang Z G, Zhang C, et al. An in situ study on austenite memory and austenitic spontaneous recrystallization of a martensitic steel[J]. Materials Science and Engineering A, 2010, 527(27/28): 7204-7209. [12] Kimmins S T, Gooch D J. Austenite memory effect in 1Cr-1Mo-0.75V(Ti, B) steel[J]. Metal Science Journal, 2013, 17(11): 519-532. [13] Zhang J, Yu L, Ding R, et al. Deformation behavior, microstructure evolution, and rupture mechanism of the novel G115 steel welded joint during creep[J]. Materials Characterization, 2023, 205: 113275. [14] Zhang J, Yu L, Gao Q, et al. Development of weld filler material to match the advanced martensitic heat resistance steel G115 and tailoring the performance by tempering temperature[J]. Journal of Materials Research and Technology, 2022, 21: 2515-2531. [15] Xu X, West G D, Siefert J A, et al. The influence of thermal cycles on the microstructure of grade 92 steel[J]. Metallurgical and Materials Transactions A, 2017, 48(11): 5396-5414. [16] Havelka L, Mohyla P, Sondel M. Thermal cycle measurement of P92 welded joints[C] //Metal 2014. Brno, 2014: 668-673. [17] Xu Y, Nie Y, Wang M, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging[J]. Acta Materialia, 2017, 131: 110-122. [18] 肖 博. 新型马氏体耐热钢G115蠕变微观损伤机理及本构模型[D]. 天津: 天津大学, 2020. Xiao Bo. Creep micro-damage mechanism and constitutive model of a novel martensitic heat-resistant G115 steel[D]. Tianjin: Tianjin University, 2020. [19] Dak G, Pandey C. Study on effect of weld groove geometry on mechanical behavior and residual stresses variation in dissimilar welds of P92/SS304L steel for USC boilers[J]. Archives of Civil and Mechanical Engineering, 2022, 22(3): 1-34. [20] Kumar A, Pandey S M, Pandey C. Dissimilar weldments of ferritic/martensitic grade P92 steel and Inconel 617 alloy: Role of groove geometry on mechanical properties and residual stresses[J]. Archives of Civil and Mechanical Engineering, 2022, 23: 54. [21] Dak G, Pandey C. Study on effect of weld groove geometry on mechanical behavior and residual stresses variation in dissimilar welds of P92/SS304L steel for USC boilers[J]. Archives of Civil and Mechanical Engineering, 2022, 22: 140. [22] Yan W, Wang W, Shan Y Y, et al. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels[J]. Frontiers of Materials Science, 2013(1): 1-27. [23] Homolová V, Janovec J, Záhumensky' P, et al. Influence of thermal-deformation history on evolution of secondary phases in P91 steel[J]. Materials Science and Engineering A, 2003, 349(1/2): 306-312. [24] Panait C G, Zielinska-Lipiec A, Koziel T, et al. Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600 ℃ for more than 100 000 h[J]. Materials Science and Engineering A, 2010, 527(16/17): 4062-4069. |