[1] 张明赫. 基于高能X射线的中锰钢组织与力学行为研究[D]. 北京: 北京科技大学, 2019. Zhang Minghe. High-energy X-ray diffraction studies on the microstructure and mechanical behavior of medium-Mn steels [D]. Beijing: University of Science and Technology Beijing, 2019. [2] Lee J Y, Kim M, Lee Y K. Design of high strength medium-Mn steel using machine learning[J]. Materials Science and Engineering A, 2022, 843: 143148. [3] 王 正. 微结构调控中锰钢机械性能和氢脆性能研究[D]. 北京: 北京科技大学, 2021. Wang Zheng. Research on mechanical properties and hydrogen embrittlement performance in medium Mn steels by microstructural control [D]. Beijing: University of Science and Technology Beijing, 2021. [4] Kwok T W J, Dye D. A review of the processing, microstructure and property relationships in medium Mn steels[J]. International Materials Reviews, 2023, 68(8): 1098-1134. [5] Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scripta Materialia, 2017, 126: 63-67. [6] 胡宝佳. 高强塑积中锰钢亚稳奥氏体调控的微观机理研究[D]. 合肥: 中国科学技术大学, 2022. Hu Baojia. Microstructural mechanisms of metastable austenite control in high strength-ductility medium-Mn steels[D]. Hefei: University of Science and Technology of China, 2022. [7] Zou Y, Xu Y B, Wang G, et al. Improved strength-ductility-toughness balance of a precipitation-strengthened low-carbon medium-Mn steel by adopting intercritical annealing-tempering process[J]. Materials Science and Engineering A, 2021, 802: 140636. [8] Benzing J T, Kwiatkowski D S A, Morsdorf L, et al. Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel[J]. Acta Materialia, 2019, 166: 512-530. [9] Li S S, Wen P Y, Li S L, et al. A novel medium-Mn steel with superior mechanical properties and marginal oxidization after press hardening[J]. Acta Materialia, 2021, 205: 116567. [10] 谢建新, 宿彦京, 薛德祯, 等. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361. Xie Jianxin, Su Yanjing, Xue Dezhen, et al. Machine learning for materials research and development[J]. Acta Metallurgica Sinica, 2021, 57(11): 1343-1361. [11] Zhang Y, Cheng W, Wang C X, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models[J]. Acta Materialia, 2020, 185: 528-539. [12] Malinov S, Sha W, McKeown J J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network[J]. Computational Materials Science, 2001, 21(3): 375-394. [13] Wang Z, Xu J P, Li J X. Mechanical properties and fracture behaviors of medium-Mn steels with and without delta-ferrite for different intercritical annealing times[J]. Materials Characterization, 2021, 172: 110730. [14] Cai Z H, Jing S Y, Li H Y, et al. The influence of microstructural characteristics on yield point elongation phenomenon in Fe-0.2C-11Mn-2Al steel[J]. Materials Science and Engineering A, 2019, 739: 17-25. [15] Guo Z K, Li L F, Yang W Y, et al. Microstructures and mechanical properties of high-Mn TRIP steel based on warm deformation of martensite[J]. Metallurgical and Materials Transactions A, 2015, 46: 1704-1714. [16] Zhang R, Cao W Q, Peng Z J, et al. Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel[J]. Materials Science and Engineering A, 2013, 583: 84-88. [17] 牛程程, 李少波, 胡建军, 等. 机器学习在材料信息学中的应用综述[J]. 材料导报, 2020, 34(23): 23100-23108. Niu Chengcheng, Li Shaobo, Hu Jianjun, et al. Application of machine learning in material informatics: A survey[J]. Materials Reports, 2020, 34(23): 23100-23108. [18] Wu Y M, Shang Z W, Lu T, et al. Target-directed discovery for low melting point alloys via inverse design strategy[J]. Journal of Alloys and Compounds, 2024, 971: 172664. [19] 徐小鹏. 基于人工神经网络的硅基光子器件逆设计方法的研究[D]. 济南: 山东大学, 2023. Xu Xiaopeng. Research on the inverse design method of silicon-based photonic devices based on artificial neural network [D]. Jinan: Shandong University, 2023. [20] 王洪桥. 高斯过程回归在不确定性量化中的应用[D]. 上海: 上海交通大学, 2018. Wang Hongqiao. Gaussian process regression for uncertainty quantification [D]. Shanghai: Shanghai Jiao Tong University, 2018. [21] Bergstra J, Bengio Y. Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012, 13(1): 281-305. [22] Jasper S, Hugo L, Ryan P A. Practical Bayesian optimization of machine learning algorithms[C] //Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012: 2951-2959. |