[1]Birol Y, I.sler D. Response to thermal cycling of CAPVD (Al, Cr)N-coated hot work tool steel[J]. Surface and Coatings Technology, 2010, 54: 454-459. [2]Ge P L, Bao M D, Zhang H J, et al. Effect of plasma nitriding on adhesion strength of CrTiAlN coatings on H13 steels by closed field unbalanced magnetron sputter ion plating[J]. Surface and Coatings Technology, 2013, 229: 146-150. [3]Kumar M. Effect of substrate temperature on surface morphology and optical properties of sputter deposited nanocrystalline nickel oxide films[J]. Materials Research Express, 2019, 6(9): 096404. [4]Younas R, Afzal N, Rafique M, et al. Nickel ion implantation effects on DC magnetron sputtered ZnO film prepared on Si(100)[J]. Ceramics International, 2019, 45: 15547-15555. [5]Guillen C, Herrero J. Transparent and P-type conductive NixO: V thin films obtained by reactive DC sputtering at room temperature[J]. Research Express, 2019, 6(9): 096410. [6]严晟硕, 李安锁, 祝超越, 等. 非平衡磁控溅射沉积Ti-N薄膜色彩和性能调控研究[J]. 表面技术, 2017, 46(6): 168-173. Yan Shengshuo, Li Ansuo, Zhu Chaoyue, et al. Colors and properties regulation of Ti-N film deposited by unbalanced magnetron sputtering[J]. Surface Technology, 2017, 46(6): 168-173. [7]沈向前, 谢 泉, 肖清泉, 等. 磁控溅射靶材刻蚀特性的模拟研究[J]. 真空, 2012, 49(1): 65-69. Shen Xiangqian, Xie Quan, Xiao Qingquan, et al. Computer simulation of the target etching characteristics in magnetron sputtering[J]. Vacuum, 2012, 49(1): 65-69. [8]Velicu I L, Ianos G H, Porosnicu C, et al. Energy-enhanced deposition of copper thin films by bipolar high power impulse magnetron sputtering[J]. Surface and Coatings Technology, 2019, 359: 97-107. [9]Le M T, Sohn Y U, Lim J W, et al. Effect of sputtering power on the nucleation and growth of Cu films deposited by magnetron sputtering[J]. Materials Transactions, 2010, 51(1): 116-120. [10]Bahrami A, Carrasco C O, Cardona A D, et al. Mechanical properties and microstructural stability of CuTa/Cu composite coatings[J]. Surface and Coatings Technology, 2019, 364: 22-31. [11]Sun H L, Huang X X, He M J, et al. Preparation and controllability of Cu particles on annealed Mo-Cu alloy films[J]. Materials Letters, 2019, 254: 175-177. [12]甄淑颖, 陈倪娇, 唐光泽, 等. 磁控溅射铜靶材的刻蚀行为[J]. 金属热处理, 2013, 38(2): 99-103. Zhen Shuying, Chen Nijiao, Tang Guangze, et al. Etched behavior of Cu target in magnetron sputtering[J]. Heat Treatment of Metals, 2013, 38(2): 99-103. [13]谢 启, 付志强, 岳 文, 等. N2流量对等离子体增强磁控溅射TiN涂层的影响[J]. 表面技术, 2017, 46(6): 161-167. Xie Qi, Fu Zhiqiang, Yue Wen, et al. Effect of N2 flow rate on TiN coatings deposited by plasma enhanced magnetron sputtering[J]. Surface Technology, 2017, 46(6): 161-167. [14]Nakano T, Saitou Y, Ueda M, et al. Growth of target race track profile during magnetron sputtering[J]. Journal of the Vacuum Society of Japan, 2015, 58(7): 261-264. [15]Behrisch R, Eckstein W. Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies[M]. Berlin: Springer Science and Business Media, 2007. [16]王传军, 闻 明, 张俊敏, 等. NiPt60%合金靶材磁控溅射前后形貌及结构观察[J]. 贵金属, 2015, 36(1): 57-60. Wang Chuanjun, Wen Ming, Zhang Junming, et al. The morphology and microstructure of NiPt60% alloy targets before and after sputtering[J]. Precious Metals, 2015, 36(1): 57-60. [17]徐均琪, 杭凌侠, 蔡长龙. 磁控溅射离子束流密度的研究[J]. 真空科学与技术学报, 2004, 24(1): 74-76. Xu Junqi, Hang Lingxia, Cai Changlong. Study on ion beam density of magnetron sputtering[J]. Chinese Journal of Vacuum Science and Technology, 2004, 24(1): 74-76. [18]Yang Wenhao, Tang Bin, Bao Mingdong, et al. Surface morphology and sputtering mechanism of etched areas of a metallic target by magnetron sputtering[J]. Journal of Electronic Materials, 2021, 50(4): 2409-2416. [19]刘仁智, 孙院军, 王快社, 等. Mo靶材组织对溅射薄膜形貌及性能的影响[J]. 稀有金属材料与工程, 2012, 41(9): 1559-1563. Liu Renzhi, Sun Yuanjun, Wang Kuaishe, et al. Influence of Mo target microstructure on the morphology and properties of sputtered films[J]. Rare Metal Materials and Engineering, 2012, 41(9): 1559-1563. [20]Zdanuk E J, Wolsky S P. Sputtering of single-crystal copper and aluminum with 20-600 eV argon ions[J]. Journal of Applied Physics, 1965, 36(5): 1683-1687. [21]董亭义, 万小勇, 章 程, 等. 磁控溅射钛靶材的发展概述[J]. 金属功能材料, 2017, 24(5): 57-62. Dong Tingyi, Wan Xiaoyong, Zhang Cheng, et al. The present status and development trend of magnetron sputtering Ti target[J]. Metallic Functional Materials, 2017, 24(5): 57-62. [22]Boydens F, Leroy W P, Persoons R, et al. The influence of target surface morphology on the deposition flux during direct-current magnetron sputtering[J]. Thin Solid Films, 2013, 531(9): 32-41. |